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A warm-up: Case of a constant 𝜎

∙ d𝑋𝑡 = 𝜎 d𝐵𝑡 observed at high-frequency {𝑋𝑘𝑇/𝑛}𝑛𝑘=0.
∙ A natural estimator is

𝜎2𝑛 =
1

𝑇

𝑛∑︁
𝑖=1

(𝑋𝑖𝑇/𝑛 −𝑋(𝑖−1)𝑇/𝑛)2.

∙ Itô formula =⇒
(𝑋𝑡 −𝑋𝑠)2 = 2𝜎

∫︁ 𝑡

𝑠

(𝑋𝑟 −𝑋𝑠) d𝐵𝑠 + 𝜎2(𝑡 − 𝑠)

and then 𝑇
√
𝑛(𝜎2𝑛 − 𝜎2) =

√
𝑛𝑀𝑛𝑇 is a martingale.

Itô again =⇒ ∀𝑡 ≥ 0,
⟨
√
𝑛𝑀𝑛⟩𝑡 P−−−→

𝑛→∞
2𝜎4 and ⟨

√
𝑛𝑀𝑛, 𝐵⟩𝑡 P−−−→

𝑛→∞
0.

With a CLT on martingales,
√
𝑛(𝜎2𝑛 − 𝜎2)

law−−−→
𝑛→∞

√
2𝜎2𝑊𝑇/𝑇, 𝑊 BM indep. from 𝐵.



The Oscillating Brownian motion (OBM)

Terminology of Keilson & Wellner (1978)

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

𝜎(𝑋𝑠) d𝐵𝑠 , 𝜎(𝑥) =

{︃
𝜎+ if 𝑥 ≥ 0
𝜎− if 𝑥 < 0.

∙ Strong existence, uniqueness (⇐= Le Gall, 1978)
∙ Analytic formula of the density, occupation time (Keilson

& Wellner, 1978)
∙ Convergence of the Euler scheme (Chan & Stramer, 1989,

Yan, 2002, ...)
∙ Approximation by Random Walks (Keilson & Wellner, 1978;

Helland, 1982; Étoré, 2006 ...)



The Oscillating Brownian motion (OBM)

Terminology of Keilson & Wellner (1978)

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

𝜎(𝑋𝑠) d𝐵𝑠 , 𝜎(𝑥) =

{︃
𝜎+ if 𝑥 ≥ 0
𝜎− if 𝑥 < 0.

Applications

∙ In a continuous time version of the Self-Exciting Threshold
Auto-Regressive (SETAR) models (Tong, 1983).

∙ In finance, it mimicks a leverage effect of log-prices.

∙ In population ecology, it models change of habitats.



The realized volatility
Observations: 𝑋𝑘𝑇/𝑛, 𝑘 = 0, . . . , 𝑛 (high-frequency data)

How to estimate 𝜎+ and 𝜎−?

Realized volatility type estimators

𝜎±(𝑛)
2 =

∑︀𝑛
𝑘=1(𝑋

±
𝑘𝑇/𝑛 −𝑋±(𝑘−1)𝑇/𝑛)2

𝑇
𝑛

∑︀𝑛
𝑘=1 1±𝑋𝑘𝑇/𝑛≥0

Idea Itô-Tanaka formula =⇒

𝑋±𝑡 = 𝑋
±
0 + 𝜎±

∫︁ 𝑡

0

1±𝑋𝑠≥0 d𝐵𝑠 +
1

2
𝐿𝑡(𝑋)

with

∙ 𝐿𝑡(𝑋) local time at 0 (finite variation process).
∙
⟨︀∫︀ ·
0

1±𝑋𝑠≥0 d𝐵𝑠
⟩︀
𝑡
= 𝑄±𝑡 occupation time of R±



A convergence result

(i) 𝜎±(𝑛) is a consistent estimator of 𝜎± as 𝑛 →∞.
(ii) When 𝑇 = 1,

√
𝑛(𝜎±(𝑛)

2 − 𝜎2±)
stable−−−→
𝑛→∞

√
2𝜎2±
𝑄±1

∫︁ 1

0

1±𝑋𝑠≥0 d ̃︀𝐵𝑠 − 1𝑄±1 2
√
2

3
√
𝜋

𝜎−𝜎+
𝜎− + 𝜎+

𝐿1(𝑋),

̃︀𝐵 is a BM indep. from 𝐵.

Remarks
∙ Joint convergence of (𝜎+(𝑛), 𝜎−(𝑛)).
∙ Using Girsanov’s theorem, we could consider the presence
of drift (the limit laws are changed).
∙ By scaling, high-frequency estimation = long time estima-
tion (not true in presence of drift).



Comments

∙ The limit depends on 𝑄±1 which follows a law of ArcSine
type

0 1

=⇒ either 𝑄+1 or 𝑄−1 is likely to be close to 1
=⇒ either 𝜎+ or 𝜎− is likely to be loosely estimated.

∙ The process 𝑋 is null recurrent
=⇒ the limit law is a mixture of normal distribution.

∙ There is an asymptotic bias which is due to the disconti-
nuity.



Some ingredients of the proof
We have to prove, in particular, convergences of type
∙ √𝑛[𝐿(𝐵), 𝐿(𝐵)] proba−−−→

𝑛→∞
4
√
2

3
√
𝜋
𝐿(𝐵)

∙ √𝑛[𝐿(𝑋), 𝑋] proba−−−→
𝑛→∞

0

∙ √𝑛[𝐿(𝑋), |𝑋|] proba−−−→
𝑛→∞

0

with [𝑌, 𝑍] =
∑︀𝑛
𝑖=1(𝑌𝑖/𝑛 − 𝑌(𝑖−1)/𝑛)(𝑍𝑖/𝑛 − 𝑍(𝑖−1)/𝑛)

For this, we use that for a suitably decreasing function 𝑓 ,

1√
𝑛

𝑛∑︁
𝑖=1

𝑓 (
√
𝑛𝑋𝑖/𝑛)

proba−−−→
𝑛→∞

𝑐(𝑓 )𝐿1(𝑋)

by adapting some results of J. Jacod (1998) to the OBM by
reducing it to a Skew Brownian motion 𝑌𝑡 = 𝐵𝑡 + 𝛾𝐿𝑡(𝑌 ).
Computations are based on explicit expression of the density
(this limits immediate generalizations).



Removing the asymptotic bias
Our estimator is changed to

̂︀𝜎±(𝑛)2 = ∑︀𝑛
𝑘=1(𝑋

±
𝑘/𝑛 −𝑋±(𝑘−1)/𝑛)(𝑋𝑘/𝑛 −𝑋(𝑘−1)/𝑛)

1
𝑛

∑︀𝑛
𝑘=1 1𝑋𝑘/𝑛≥0

√
𝑛(̂︀𝜎±(𝑛)2 − 𝜎±)2 stable−−−→

𝑛→∞

√
2𝜎2±
𝑄±1

∫︁ 1

0

1±𝑋𝑠≥0 d ̃︀𝐵𝑠 .
The reason is that

√
𝑛

𝑛∑︁
𝑘=1

(𝑋+𝑘/𝑛 −𝑋+(𝑘−1)/𝑛)(𝑋−𝑘/𝑛 −𝑋−(𝑘−1)/𝑛)

stable−−−→
𝑛→∞

2
√
2

3
√
𝜋

𝜎−𝜎+
𝜎− + 𝜎+

𝐿1(𝑋).



Numerical illustration on
𝑆𝑛+ :=

√
𝑛(𝜎±(𝑛)− 𝜎)

𝑀𝑛+ :=
√
𝑛(̂︀𝜎±(𝑛)− 𝜎)
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𝜎− = 1/2, 𝜎+ = 2, 𝑛 = 500, on 10 000 paths



Estimation of a two-valued drift

𝑋𝑡 = 𝑥 +

∫︁ 𝑡

0

𝜎(𝑋𝑠) d𝐵𝑠 +

∫︁ 𝑡

0

𝑏(𝑋𝑠) d𝑠,

with

𝜎(𝑥) =

{︃
𝜎+ if 𝑥 ≥ 0
𝜎− if 𝑥 < 0

and 𝑏(𝑥) =

{︃
𝑏+ if 𝑥 ≥ 0
𝑏− if 𝑥 < 0.

How to estimate (𝑏−, 𝑏+)?
∙ We should consider long time estimation.
∙ The respective signs of 𝑏+ and 𝑏− are fundementals:

𝑏+ > 0 𝑏+ = 0 𝑏+ < 0

𝑏− > 0 transient null recurrent ergodic
𝑏− = 0 transient null recurrent null recurrent
𝑏− < 0 transient transient transient



Estimation of a two-valued drift
Itô-Tanaka formula + Maximization of the Girsanov weight

𝛽± = ±
𝑋±𝑇 −𝑋±0 − 𝐿𝑇/2

𝑄±𝑇
= 𝑏± +

𝑀±𝑡
𝑄±𝑇

where 𝑀± =
∫︀ ·
0

1±𝑋𝑠≥0 d𝐵𝑠 , ⟨𝑀±⟩ = 𝑄±.

=⇒ Empirical estimator for large 𝑇

̂︀𝑏± = ±𝑋±𝑇 −𝑋±0 − �̂�𝑇/2
�̂�±𝑇

where �̂�±, �̂� are empirical estimators of 𝑄±, 𝐿.

The convergence of the estimator depends on the long time
behavior of 𝑄±𝑇 , and of the regime of 𝑋.



Estimation of a two-valued drift

Ergodic case:

{︃
𝑏+ < 0

𝑏− > 0

∙ Unique invariant measure 𝜇( d𝑥) ∝ 2
𝜎(𝑥)
exp

(︁
−
∫︀ 𝑥
0
2𝑏(𝑦)
𝜎(𝑦)
d𝑦

)︁
d𝑥

∙ Ergodicity and martingale CLT =⇒

𝑄±𝑇
𝑇

a.s.−−−→
𝑇→∞

𝑐± and
𝑀±𝑇√
𝑇

law−−−→
𝑇→∞

√
𝑐±𝐺±

for (𝐺−, 𝐺+) a Gaussian rv.
⇒ The estimator is consistent and 𝛽± converges to 𝑏± at rate
1/
√
𝑇 with a CLT.



Estimation of a two-valued drift

“Repulsive” case:

{︃
𝑏+ > 0

𝑏− < 0

∙ The process is transient and the last passage time to 0 is
finite a.s.
∙ With probab. 𝑝 = 𝜎−𝑏+

𝜎−𝑏+−𝜎+𝑏− , the process ends up in the
positive axis (Watanabe, 1995).
⇒ 𝑄+𝑇 /𝑇 converges to 1 and 𝛽+ converges to 𝑏+ at rate 1/

√
𝑇

with a CLT.
⇒ The estimator of 𝑏− is meaningless.
∙ Or the symmetric situation holds.

Other cases should be treated individually and may
lead to other rates.



Application to financial data

∙ P. Mota & M. Esquível (2014) have proposed a continu-
ous time version of a SETAR model with delay and threshold
regime switching (DTRS).

∙ Their model uses an artifical thin layer for switching to
avoid immediate switchings.

∙ They propose a least squares estimation procedure (coming
from time series).

∙ 21 stocks are analyzed (2005-2010): leverage and mean-
reverting effects hold for most of them.

Our estimators gives consistent results with these
ones.



Leverage and mean-reverting effects
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The threshold is detected with the AIC model selection.



Comparison with a non-parametric estimator
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Conclusion

∙ The problem of estimation of SDE with discontinuous co-
efficients is surprisingly open.
∙ Asymptotics of occupation and local times play a very im-
portant role.
∙ Heavily relies on the limits theorems contained in the book
Jacod & Protter. However, they should be adapted to the
Skew Brownian motion (some questions are left open).
∙ The presence of a drift really changes the picture.

z AL & PP, Statistical estimation of the Oscillating Brownian
Motion, arxiv:1701.02129 (2017).
z Estimation of drift, application to financial data: works in
progress.
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