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Abstract

Martingale transport plans on the line are known from Beiglböck & Juillet [3] to have

an irreducible decomposition on a (at most) countable union of intervals. We provide an

extension of this decomposition for martingale transport plans in Rd, d ě 1. Our decomposition

is a partition of Rd consisting of a possibly uncountable family of relatively open convex

components, with the required measurability so that the disintegration is well-defined. We

justify the relevance of our decomposition by proving the existence of a martingale transport

plan filling these components. We also deduce from this decomposition a characterization of

the structure of polar sets with respect to all martingale transport plans.

Key words. Martingale optimal transport, irreducible decomposition, polar sets.

1 Introduction

The problem of martingale optimal transport was introduced by P. Henry-Labordère as the

dual of the problem of robust (model-free) superhedging of exotic derivatives in financial math-

ematics, see Beiglböck, Henry-Labordère & Penkner [2] in discrete time, and Galichon, Henry-

Labordère & Touzi [9] in continuous-time. This robust superhedging problem was introduced

by Hobson [14], and was addressing specific examples of exotic derivatives by means of corre-

sponding solutions of the Skorohod embedding problem, see [6, 15, 16], and the survey [14].

Given two probability measures µ, ν on Rd, with finite first order moment, martingale

optimal transport differs from standard optimal transport in that the set of all interpolating
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probability measures Ppµ, νq on the product space is reduced to the subset Mpµ, νq restricted

by the martingale condition. We recall from Strassen [20] that Mpµ, νq ‰ H if and only if

µ ĺ ν in the convex order, i.e. µpfq ď νpfq for all convex functions f . Notice that the

inequality µpfq ď νpfq is a direct consequence of the Jensen inequality, the reverse implication

follows from the Hahn-Banach theorem.

This paper focuses on the critical observation by Beiglböck & Juillet [3] that, in the one-

dimensional setting d “ 1, any such martingale interpolating probability measure P has a

canonical decomposition P “
ř
kě0

Pk, where Pk P Mpµk, νkq and µk, νk are the restrictions

of µ, µ to the so-called irreducible components Ik, Jk, respectively, k ě 0. Here, pIkqkě1 are

open intervals, I0 :“ RzpYkě1Ikq, and Jk is an augmentation of Ik by the inclusion of either

one of the endpoints of Ik, depending on whether they are charged by the distribution Pk.

Remarkably, the irreducible components pIk, Jkqkě0 is independent of the choice of P P Mpµ, νq.

To understand this decomposition, notice that convex functions in one dimension are generated

by the family fcpxq :“ |x ´ c|, x P R, c P R. Then, in terms of the potential functions

Uµpcq :“ µpfcq, and Uνpcq :“ νpfcq, c P R, we have µ ĺ ν if and only if Uµ ď Uν and µ, ν

have same mean. Then, at any contact points c, of the potential functions, Uµ “ Uν , we have

equality in the underlying Jensen equality, which means that the singularity c of the underlying

function fc is not seen by the measure. In other words, the point c acts as a barrier for the

mass transfer in the sense that martingale transport maps do not cross the barrier c. Such

contact points are precisely the endpoints of the intervals Ik, k ě 1.

The decomposition in irreducible components plays a crucial role for the quasi-sure formu-

lation introduced by Beiglböck, Nutz and Touzi [4], and represents an important difference

between martingale transport and standard transport. Indeed, while the martingale transport

problem is affected by the quasi-sure formulation, the standard optimal transport problem is

not changed. We also refer to Ekren & Soner [8] for further functional analytic aspects of this

duality.

Our objective in this paper is to extend the last decomposition to an arbitrary d´dimensional

setting, d ě 1. The main difficulty is that convex functions do not have anymore such a simple

generating family. Therefore, all of our analysis is based on the set of convex functions. A

first attempt to extend the last decomposition to the multi-dimensional case was achieved by

Ghoussoub, Kim & Lim [10]. Motivated by the martingale monotonicity principle of Beiglböck

& Juillet [3] (see also Zaev [22] for higher dimension and general linear constraints), their strat-

egy is to find a monotone set Γ Ă Rd ˆRd, where the robust superhedging holds with equality,

as a support of the optimal martingale transport in Mpµ, νq. Denoting Γx :“ ty : px, yq P Γu,

this naturally induces the relation xRel x1 if x P ri convpΓx1q, which is then completed to an

equivalence relation „. The equivalence classes of the equivalence relation „ define their notion

of irreducible components.

Our subsequent results differ from [10] from two perspectives. First, unlike [10], our decom-

position is universal in the sense that it is not relative to any particular martingale measure

in Mpµ, νq (see example 3.6). Second, our construction of the irreducible convex paving al-
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lows to prove the required measurability property, thus justifying completely the existence of

a disintegration of martingale plans.

Finally, during the final stage of writing the present paper, we learned about the parallel

work by Jan Obłój and Pietro Siorpaes [18]. Although the results are close, our approach is

different from theirs. We are grateful to them for pointing to us to the notions of "convex

face" and "Wijsmann topology" and the relative references, which allowed us to streamline our

presentation. In an earlier version of this work we used instead a topology that we called the

compacted Hausdorff distance, defined as the topology generated by the countable restrictions

of the space to the closed balls centered in the origin with integer radia; the two are in our case

the same topologies, as the Wijsman topology is locally equivalent to the Hausdorff topology

in a locally compact set. We also owe Jan and Pietro special thanks for their useful remarks

and comments on a first draft of this paper privately exchanged with them.

The paper is organized as follows. Section 2 collects the main technical ingredients needed

for the statement of our main results. In particular, we introduce the new notions of relative

face and tangent convex functions, together with the required topology on the set of such func-

tions. Section 3 contains the main results of the paper, namely our decomposition in irreducible

convex paving and the structure of polar sets, and shows the identity with the Beiglböck &

Juillet [3] notion in the one-dimensional setting. The remaining sections contains the proofs

of these results. In particular, the measurability of our irreducible convex paving is proved in

Section 7.

Notations. We denote by R̄ the completed real line R Y t´8,8u, and similarly denote

R` :“ R` Y t8u. We fix an integer d ě 1. For x P Rd and r ě 0, we denote Brpxq the

closed ball for the Euclidean distance, centered in x with radius r. We denote for simplicity

Br :“ Brp0q. If x P X , and A Ă X , where pX ,dq is a metric space, distpx,Aq :“ infaPA dpx, aq.

In all this paper, Rd is endowed with the Euclidean distance.

If V is a topological affine space and A Ă V is a subset of V , intA is the interior of A, clA

is the closure of A, AffA is the smallest affine subspace of V containing A, convA is the convex

hull of A, dimpAq :“ dimpAffAq, and riA is the relative interior of A, which is the interior of

A in the topology of AffA induced by the topology of V . We also denote by BA :“ clAzriA

the relative boundary of A, and by λA the Lebesgue measure of AffA.

The set K of all closed subsets of Rd is a Polish space when endowed with the Wijsman

topology1 (see Beer [1]). As Rd is separable, it follows from a theorem of Hess [11] that a

function F : Rd ÝÑ K is Borel measurable with respect to the Wijsman topology if and only

if its associated multifunction is Borel measurable, i.e.

F´pV q :“ tx P Rd : F pxq X V ‰ Hu is Borel for each open subset V Ă Rd.

The subset uK Ă K of all the convex closed subsets of Rd is closed in K for the Wijsman topology,

1The Wijsman topology on the collection of all closed subsets of a metric space pX , dq is the weak topology
generated by tdistpx, ¨q : x P X u.
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and therefore inherits its Polish structure. Clearly, uK is isomorphic to ri uK (with reciprocal

isomorphism cl ). We shall identify these two isomorphic sets in the rest of this text, when

there is no possible confusion.

We denote Ω :“ Rd ˆ Rd and define the two canonical maps

X : px, yq P Ω ÞÝÑ x P Rd and Y : px, yq P Ω ÞÝÑ y P Rd.

For ϕ,ψ : Rd ÝÑ R̄, and h : Rd ÝÑ Rd, we denote

ϕ ‘ ψ :“ ϕpXq ` ψpY q, and hb :“ hpXq ¨ pY ´Xq,

with the convention 8 ´ 8 “ 8.

For a Polish space X , we denote by BpX q the collection of Borel subsets of X , and PpX q the

set of all probability measures on
`
X ,BpX q

˘
. For P P PpX q, we denote by NP the collection

of all P´null sets, suppP the smallest closed support of P, and ŐsuppP :“ cl conv suppP the

smallest convex closed support of P. For a measurable function f : X Ñ R, we use again the

convention 8 ´ 8 “ 8 to define its integral, and we denote

Prf s :“ EPrf s “

ż

X

fdP “

ż

X

fpxqPpdxq for all P P PpX q.

Let Y be another Polish space, and P P PpX ˆYq. The corresponding conditional kernel Px is

defined by:

Ppdx, dyq “ µpdxq b Pxpdyq, where µ :“ P ˝ X´1.

We denote by L0pX ,Yq the set of Borel measurable maps from X to Y. We denote for sim-

plicity L0pX q :“ L0pX , R̄q and L0
`pX q :“ L0pX , R̄`q. For a measure m on X , we denote

L1pX ,mq :“ tf P L0pX q : mr|f |s ă 8u. We also denote simply L1pmq :“ L1pR̄,mq and

L1
`pmq :“ L1

`pR̄`,mq.

We denote by C the collection of all finite convex functions f : Rd ÝÑ R. We denote by

Bfpxq the corresponding subgradient at any point x P Rd. We also introduce the collection of

all measurable selections in the subgradient, which is nonempty by Lemma 9.2,

Bf :“
 
p P L0pRd,Rdq : ppxq P Bfpxq for all x P Rd

(
.

We finally denote f
8

:“ lim infnÑ8 fn, for any sequence pfnqně1 of real number, or of real-

valued functions.

2 Preliminaries

Throughout this paper, we consider two probability measures µ and ν on Rd with finite first

order moment, and µ ĺ ν in the convex order, i.e. νpfq ě µpfq for all f P C. Using the

convention 8 ´ 8 “ 8, we may then define pν ´ µqpfq P r0,8s for all f P C.

We denote by Mpµ, νq the collection of all probability measures on RdˆRd with marginals

P ˝X´1 “ µ and P ˝ Y ´1 “ ν. Notice that Mpµ, νq ‰ H by Strassen [20].

An Mpµ, νq´polar set is an element of XPPMpµ,νqNP. A property is said to hold Mpµ, νq´quasi

surely (abbreviated as q.s.) if it holds on the complement of an Mpµ, νq´polar set.

4



2.1 Relative face of a set

For a subset A Ă Rd and a P Rd, we introduce the face of A relative to a (also denoted

a´relative face of A):

rfaA :“
 
y P A : pa ´ εpy ´ aq, y ` εpy ´ aqq Ă A, for some ε ą 0

(
. (2.1)

Figure 1 illustrates examples of relative faces of a square S, relative to some points. For later

x1

x2

x3

S

x1

x2

x3

rfx3
S

x1

x2

x3

rfx1
S

rfx2
S

Figure 1: Examples of relative faces.

use, we list some properties whose proofs are reported in Section 9. 2

Proposition 2.1. (i) For A,A1 Ă Rd, we have rfapAXA1q “ rfapAqXrfapA1q, and rfaA Ă rfaA1

whenever A Ă A1. Moreover, rfaA ‰ H iff a P rfaA iff a P A.

(ii) For a convex A, rfaA “ riA ‰ H iff a P riA. Moreover, rfaA is convex relatively open,

Azcl rfaA is convex, and if x0 P Azcl rfaA and y0 P A, then rx0, y0q Ă Azcl rfaA. Furthermore,

if a P A, then dimprfaclAq “ dimpAq if and only if a P riA. In this case, we have cl rfaclA “

cl ri clA “ clA “ cl rfaA.

2.2 Tangent Convex functions

Recall the notation (2.1), and denote for all θ : Ω Ñ R̄:

domxθ :“ rfxconv dom θpx, ¨q.

For θ1, θ2 : Ω ÝÑ R, we say that θ1 “ θ2, µbpw, if

domXθ1 “ domXθ2, and θ1pX, ¨q “ θ2pX, ¨q on domXθ1, µ´ a.s.

The main ingredient for our extension is the following.

Definition 2.2. A measurable function θ : Ω Ñ R` is a tangent convex function if

θpx, ¨q is convex, and 0 “ θpx, xq “ minRd θpx, ¨q, for all x P Rd.

2 rfaA is equal to the only relative interior of face of A containing a, where we extend the notion of face to
non-convex sets. A face F of A is a nonempty subset of A such that for all ra, bs Ă A, with pa, bq X F ‰ H, we have
ra, bs Ă F . It is proved in Hiriart-Urruty-Lemaréchal [13] that when A is convex, the relative interior of the faces of
A form a partition of A, see also Rockafellar [19].
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We denote by Θ the set of tangent convex functions, and we define

Θµ :“
 
θ P L0pΩ,R`q : θ “ θ1, µbpw, and θ ě θ1, for some θ1 P Θ

(
.

In order to introduce our main example of such functions, let

Tpfpx, yq :“ fpyq ´ fpxq ´ pbpx, yq ě 0, for all f P C, and p P Bf.

Then, TpCq :“ tTpf : f P C, p P Bfu Ă Θ Ă Θµ.

Example 2.3. The second inclusion is strict. Indeed, let d “ 1, and consider the convex

function f :“ 81p´8,0q. Then θ :“ fpY ´ Xq P Θ. Now let θ1 “ θ `
a

|Y ´X|. Notice

that since domXθ “ domXθ
1 “ tXu, we have θ “ θ1, µbpw for any measure µ, and θ1 ě θ.

Therefore θ1 P Θµ. However, for all x P Rd, θ1px, ¨q is not convex, and therefore θ1 R Θ.

In higher dimension we may even have X P ri domθ1pX, ¨q, and θ1pX, ¨q is not convex.

Indeed, for d “ 2, let f : py1, y2q ÞÝÑ 8p1t|y1|ą1u ` 1t|y2|ą1uq, so that θ :“ fpY ´ Xq P Θ. Let

x0 :“ p1, 0q and θ1 :“ θ ` 1tY “X`x0u. Then, θ “ θ1, µbpw for any measure µ, and θ1 ě θ.

Therefore θ1 P Θµ. However, θ1 R Θ as θ1px, ¨q is not convex for all x P Rd.

Proposition 2.4. (i) Let θ P Θµ, domXθ “ rfXdomθpX, ¨q Ă domθpX, ¨q, µ´a.s.

(ii) Let θ1, θ2 P Θµ, domXpθ1 ` θ2q “ domXθ1 X domXθ2, µ´a.s.

(iii) Θµ is a convex cone.

Proof. (i) It follows immediately from the fact that θpX, ¨q is convex and finite on domXθ,

µ´a.s. by definition of Θµ. Then domXθ Ă rfXdomθpX, ¨q. On the other side, as domθpX, ¨q Ă

conv domθpX, ¨q, the monotony of rfx gives the other inclusion: rfXdomθpX, ¨q Ă domXθ

(ii) As θ1, θ2 ě0, dompθ1 `θ2q“domθ1 Xdomθ2. Then, for x P Rd, conv dompθ1px, ¨q̀ θ2px, ¨qqĂ

conv domθ1px, ¨q X conv domθ2px, ¨q. By Proposition 2.1 (i),

domxpθ1 ` θ2q Ă domxθ1 X domxθ2, for all x P Rd.

As for the reverse inclusion, notice that (i) implies that domXθ1 X domXθ2 Ă domθ1pX, ¨q X

domθ2pX, ¨q “ dom
`
θ1pX, ¨q ` θ2pX, ¨q

˘
Ă conv dom

`
θ1pX, ¨q ` θ2pX, ¨q

˘
, µ´a.s. Observe that

domxθ1 X domxθ2 is convex, relatively open, and contains x. Then,

domXθ1 X domXθ2 “ rfX
`
domXθ1 X domXθ2

˘
Ă rfX

´
conv dom

`
θ1pX, ¨q ` θ2pX, ¨q

˘¯

“ domXpθ1 ` θ2q µ´ a.s.

(iii) Given (ii), this follows from direct verification. l

Definition 2.5. A sequence pθnqně1 Ă L0pΩq converges µbpw to some θ P L0pΩq if

domX pθ8q “ domXθ and θnpX, ¨q ÝÑ θpX, ¨q, pointwise on domXθ, µ´ a.s.

Notice that the µbpw-limit is µbpw unique. In particular, if θn converges to θ, µbpw, it

converges as well to θ8.
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Proposition 2.6. Let pθnqně1 Ă Θµ, and θ : Ω ÝÑ R̄`, such that θn ÝÑ
nÑ8

θ, µbpw,

(i) domXθ Ă lim infnÑ8 domXθn, µ´a.s.

(ii) If θ1
n “ θn, µbpw, and θ1

n ě θn, then θ1
n ÝÑ
nÑ8

θ, µbpw;

(iii) θ8 P Θµ.

Proof. (i) Let x P Rd, such that θnpx, ¨q converges on domxθ to θpx, ¨q. Let y P domxθ, let y1 P

domxθ such that y1 “ x´ ǫpy ´ xq, for some ǫ ą 0. As θnpx, yq ÝÑ
nÑ8

θpx, yq, and θnpx, y1q ÝÑ
nÑ8

θpx, y1q, then for n large enough, both are finite, and y P domxθn. y P lim infnÑ8 domxθn, and

domxθ Ă lim infnÑ8 domxθn. The inclusion is true for µ´a.e. x P Rd, which gives the result.

(ii) By (i), we have domXθ Ă lim infnÑ8 domXθn “ lim infnÑ8 domXθ
1
n, µ´a.s. As θn ď θ1

n,

domXθ
1
8 Ă domXθ8 Ă lim infnÑ8 domXθn, µ´a.s. We denote Nµ P Nµ, the set on which

θnpX, ¨q does not converge to θpX, ¨q on domXθpX, ¨q. For x R Nµ, for y P domxθ, θnpx, yq “

θ1
npx, yq, for n large enough, and θ1

npx, yq ÝÑ
nÑ8

θpx, yq ă 8. Then domXθ “ domXθ
1
8, and

θ1
npX, ¨q converges to θpX, ¨q, on domXθ, µ´a.s. We proved that θ1

n ÝÑ
nÑ8

θ, µbpw.

(iii) is proved in Subsection 8.2. l

The next result shows the relevance of this notion of convergence for our setting.

Proposition 2.7. Let pθnqně1 Ă Θµ. Then, we may find a sequence pθn P convpθk, k ě nq, and
pθ8 P Θµ such that pθn ÝÑ pθ8, µbpw as n Ñ 8.

The proof is reported in Subsection 8.2.

Definition 2.8. (i) A subset T Ă Θµ is µbpw-Fatou closed if θ8 P T for all pθnqně1 Ă T

converging µbpw (in particular, Θµ is µbpw´Fatou closed by Proposition 2.6 (iii)).

(ii) The µbpw´Fatou closure of a subset A Ă Θµ is the smallest µbpw´Fatou closed set

containing A:
pA :“

č 
T Ă Θµ : A Ă T , and T µbpw-Fatou closed

(
.

We next introduce for a ě 0 the set Ca :“
 
f P C : pν ´ µqpfq ď a

(
, and

pT pµ, νq :“
ď

aě0

pTa, where pTa :“ {TpCaq, and T
`
Ca

˘
:“

 
Tpf : f P Ca, p P Bf

(
.

Proposition 2.9. pT pµ, νq is a convex cone.

Proof. We first prove that pT pµ, νq is a cone. We consider λ, a ą 0, as we have λCa “ Cλa,

and as convex combinations and inferior limit commute with the multiplication by λ, we have

λpTa “ pTλa. Then pT pµ, νq “ coneppT1q, and therefore it is a cone.

We next prove that pTa is convex for all a ě 0, which induces the required convexity of
pT pµ, νq by the non-decrease of the family tpTa, a ě 0u. Fix 0 ď λ ď 1, a ě 0, θ0 P pTa, and

denote T pθ0q :“
 
θ P pTa : λθ0 ` p1 ´ λqθ P pTa

(
. In order to complete the proof, we now verify

that T pθ0q Ą T
`
Ca

˘
and is µbpw´Fatou closed, so that T pθ0q “ pTa.

7



To see that T pθ0q is Fatou-closed, let pθnqně1 Ă T pθ0q, converging µbpw. By definition of

T pθ0q, we have λθ0`p1´λqθn P pTa for all n. Then, λθ0`p1´λqθn ÝÑ lim infnÑ8 λθ0`p1´λqθn,

µbpw, and therefore λθ0 ` p1 ´ λqθ8 P pTa, which shows that θ8 P T pθ0q.

We finally verify that T pθ0q Ą T
`
Ca

˘
. First, for θ0 P T

`
Ca

˘
, this inclusion follows directly

from the convexity of T
`
Ca

˘
, implying that T pθ0q “ pTa in this case. For general θ0 P pTa, the

last equality implies that T
`
Ca

˘
Ă T pθ0q, thus completing the proof. l

Notice that even though TpCaq Ă Θ, the functions in pT pµ, νq may not be in Θ as they

may not be convex in y on pdomxθqc for some x P Rd. The following result shows that some

convexity is still preserved.

Proposition 2.10. For all θ P pT pµ, νq, we may find Nµ P Nµ such that for x1, x2 R Nµ,

y1, y2 P Rd, and λ P r0, 1s with ȳ :“ λy1 ` p1 ´ λqy2 P domx1
θ X domx2

θ, we have:

λθpx1, y1q ` p1 ´ λqθpx1, y1q ´ θpx1, ȳq “ λθpx2, y1q ` p1 ´ λqθpx2, y1q ´ θpx2, ȳq ě 0.

The proof of this claim is reported in Subsection 8.1. We observe that the statement also

holds true for a finite number of points y1, ..., yk.3

2.3 Extended integral

We now introduce the extended pν ´ µq´integral:

ν paµrθs :“ inf
 
a ě 0 : θ P pTa

(
for θ P pT pµ, νq.

Proposition 2.11. (i) Prθs ď ν paµrθs ă 8 for all θ P pT pµ, νq and P P Mpµ, νq.

(ii) ν paµrTpf s “ pν ´ µqrf s for f P C X L1pνq and p P Bf .

(iii) ν paµ is homogeneous and convex.

Proof. (i) For a ą ν paµrθs, set Sa :“
 
F P Θµ : PrF s ď a for all P P Mpµ, νq

(
. Notice that Sa

is µbpw´Fatou closed by Fatou’s lemma, and contains TpCaq, as for f P CXL1pνq and p P Bf ,

PrTpf s “ pν´µqrf s for all P P Mpµ, νq. Then Sa contains pTa as well, which contains θ. Hence,

θ P Sa and Prθs ď a for all P P Mpµ, νq. The required result follows from the arbitrariness of

a ą ν paµrθs.

(ii) Let P P Mpµ, νq. For p P Bf , notice that Tpf P TpCaq Ă xTa for some a “ pν ´ µqrf s, and

therefore pν ´ µqrf s ě νpaµrTpf s. Then, the result follows from the inequality pν ´ µqrf s “

PrTpf s ď ν paµrTpf s.

(iii) Similarly to the proof of Proposition 2.9, we have λpTa “ pTλa, for all λ, a ą 0. Then with

the definition of ν paµ we have easily the homogeneity.

To see that the convexity holds, let 0 ă λ ă 1, and θ, θ1 P pT pµ, νq with a ą ν paµrθs, a1 ą

ν paµrθ1s, for some a, a1 ą 0. By homogeneity and convexity of pT1, λθ ` p1 ´ λqθ1 P pTλa`p1´λqa1 ,

so that ν paµrλθ ` p1 ´ λqθ1s ď λa ` p1 ´ λqa1. The required convexity property now follows

3 This is not a direct consequence of Proposition 2.10, as the barycentre ȳ has to be in domx1
θ X domx2

θ.
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from arbitrariness of a ą νpaµrθs and a1 ą ν paµrθ1s. l

The following compacteness result plays a crucial role.

Lemma 2.12. Let pθnqně1 Ă pT pµ, νq be such that supně1 ν paµpθnq ă 8. Then we can find a

sequence pθn P convpθk, k ě nq such that

pθ8 P pT pµ, νq, pθn ÝÑ pθ8, µbpw, and ν paµppθ8q ď lim inf
nÑ8

ν paµpθnq.

Proof. By possibly passing to a subsequence, we may assume that limnÑ8pν paµqpθnq exists.

The boundedness of ν paµpθnq ensures that this limit is finite. We next introduce the sequence
pθn of Proposition 2.7. Then pθn ÝÑ pθ8, µ b pw, and therefore pθ8 P pT pµ, νq, because of the

convergence pθn ÝÑ pθ8, µbpw. As pν paµqppθnq ď supkěnpν paµqpθkq by Proposition 2.11 (iii),

we have 8 ą limnÑ8pν paµqpθnq “ limnÑ8 supkěnpν paµqpθkq ě lim supnÑ8pν paµqppθnq. Set

l :“ lim supnÑ8 ν paµppθnq. For ǫ ą 0, we consider n0 P N such that supkěn0
ν paµppθkq ď l ` ǫ.

Then for k ě n0, pθk P pTl`2ǫpµ, νq, and therefore pθ8 “ lim infkěn0

pθk P pTl`2ǫpµ, νq, implying

ν paµppθq ď l ` 2ǫ ÝÑ l, as ǫ Ñ 0. Finally, lim infnÑ8pν paµqpθnq ě νpaµppθ8q. l

3 Main results

3.1 The irreducible convex paving

Our final ingredient is the following measurement of subsets K Ă Rd:

GpKq :“ dimpKq ` gKpKq where gKpdxq :“ p2πq´ 1

2
dimKe´ 1

2
|x|2λKpdxq,

Notice that 0 ď G ď d` 1 and, for any convex subsets C1 Ă C2 of Rd, we have

GpC1q “ GpC2q iff riC1 “ riC2 iff clC1 “ clC2. (3.2)

For θ P L0
`pΩq, A P BpRdq, we introduce the following map from Rd to the set uK of all relatively

open convex subsets of Rd:

Kθ,Apxq :“ rfxconvpdomθpx, ¨qzAq “ domXpθ ` 81RdˆAq, for all x P Rd. (3.3)

We recall that a function is universally measurable if it is measurable with respect to every

complete probability measure that measures all Borel subsets.

Lemma 3.1. For θ P L0
`pΩq and A P BpRdq, we have:

(i) cl conv domθpX, ¨q, domXθ, and Kθ,A are universally measurable;

(ii) G : uK ÝÑ R is Borel-measurable;

(iii) if A P Nν, and θ P pT pµ, νq, then up to a modification on a µ´null set, Kθ,ApRdq Ă
˝
K is a

partition of Rd with x P Kθ,Apxq for all x P Rd.

9



The proof is reported in Subsections 4.2, 7.1 and 7.2. The following property is the key-

ingredient for our decomposition in irreducible convex paving.

Proposition 3.2. For all pθ,Nνq P pT pµ, νq ˆ Nν, we have Y P clKθ,Nν
pXq, Mpµ, νq´q.s.

Proof. For an arbitrary P P Mpµ, νq, we have by Proposition 2.11 that Prθs ă 8. Then,

P
“
domθzpRd ˆNνq

‰
“ 1 i.e. PrY P DXs “ 1 where Dx :“ convpdomθpx, ¨qzNνq. By the

martingale property of P, we deduce that

X “ EPrY 1Y PDX
|Xs “ p1 ´ ΛqEI ` ΛED, µ´ a.s.

Where Λ :“ PXrY P DXzcl IpXqs, ED :“ EPX rY |Y P DXzclIpXqs, EI :“ EPX rY |Y P cl IpXqs,

and PX is the conditional kernel to X of P. We have EI P cl rfXDX Ă DX and ED P

DXzcl rfXDX because of the convexity of DXzcl rfXDX given by Proposition 2.1 (ii) (DX is

convex). The lemma also gives that if Λ ‰ 0, then EPrY |Xs “ ΛED ` p1 ´ ΛqEI P DXzcl IpXq.

This implies that

tΛ ‰ 0u Ă tEPrY |Xs P DXzcl IpXqu Ă tEPrY |Xs R IpXqu Ă tEPrY |Xs ‰ Xu.

Then PrΛ ‰ 0s “ 0, and therefore P rY P DXzcl IpXqs “ 0. Since PrY P DXs “ 1, this shows

that PrY P cl IpXqs “ 1. l

In view of Proposition 3.2 and Lemma 3.1 (iii), we introduce the following optimization

problem which will generate our irreducible convex paving decomposition:

inf
pθ,NνqP pT pµ,νqˆNν

µrGpKθ,Nν
qs. (3.4)

Our first main result is the following.

Theorem 3.3. (i) There is a µ-a.s. unique universally measurable minimizer I :“ Kpθ, pNν
:

Rd Ñ uK of (3.4), for some ppθ, pNνq P pT pµ, νq ˆ Nν.

I is called irreducible convex paving map, and satisfies Y P clIpXq, Mpµ, νq´q.s.

(ii) for all θ P pT pµ, νq and Nν P Nν, we have IpXq Ă Kθ,Nν
pXq, µ-a.s.

(iii) up to a modification on a µ´null set, Ipxq is a relatively open convex subset of Rd with

x P Ipxq, for all x P Rd, and
 
Ipxq, x P Rd

(
is a partition of Rd.

In item (i), the measurability of I is induced by Lemma 3.1 (i), while the fact that Y P IpXq,

Mpµ, νq´q.s. is a consequence of Proposition 3.2. Existence and uniqueness, together with

(ii), are proved in Subsection 4.1. (iii) is implied by Lemma 3.1 (ii).

The next result shows the existence of a maximum support martingale transport plan, i.e.

a martingale interpolating measure pP whose disintegration pPx has a maximum convex hull of

supports among all measures in Mpµ, νq. For a probability measure P on a topological space,

and a Borel subset A, P|A :“ Pr¨ XAs denotes its restriction to A.
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Proposition 3.4. There exists pP P Mpµ, νq such that for all P P Mpµ, νq:

(i) ŐsuppPX Ă Ősupp pPX “ cl IpXq, µ´a.s.,

(ii) JpXq :“ IpXq Y Ősupp pPX |BIpXq is convex,

Y P JpXq, Mpµ, νq ´ q.s. and suppPX |BIpXq Ă JzIpXq, µ´ a.s.

(iii) J is unique µ´a.s. and, up to a modification on a µ´null set, Theorem 3.3 (iii) is

preserved, we have I Ă J Ă cl I, and J is constant on Ipxq, for all x P Rd.

The proof is reported in Subsection 6.3, and is a consequence of Theorem 3.7 below. Propo-

sition 3.4 provides a characterization of the irreducible convex paving by means of an optimality

criterion on Mpµ, νq. In particular, Example 3.6 uses this characterization to determine the

irreducible convex paving in simple concrete cases.

Remark 3.5. We may chose the measure pP P Mpµ, νq of Proposition 3.4 so that

µ
“
PXrtyus ą 0

‰
ď µ

“pPXrtyus ą 0
‰

for all P P Mpµ, νq and y P Rd.

Let JpXq :“ IpXq Y ty P Rd : pPXrtyus ą 0u, and JθpXq :“ dom θpX, ¨q X JpXq, for some

θ P pT pµ, νq. Then, up to modification on a µ´null set preserving Proposition 3.4 (iii),

I Ă J Ă Jθ Ă J Ă cl I, Y P JθpXq, Mpµ, νq ´ q.s.

and I, J, J, Jθ constant on Ipxq, for all x P Rd.
(3.5)

These claims are justified in Subsection 6.4.

Example 3.6. In R2, we introduce x0 :“ p0, 0q, x1 :“ p1, 0q, y0 :“ x0, y´1 :“ p0,´1q,

y1 :“ p0, 1q, and y2 :“ p2, 0q. Then we set µ :“ 1

2
pδx0

` δx1
q and ν :“ 1

8
p4δy0

` δy´1
` δy1

` 2δy2
q.

We can show easily that Mpµ, νq is the nonempty convex hull of P1 and P2 where

P1 :“
1
8

`
4δx0,y0

` 2δx1,y2
` δx1,y1

` δx1,y´1

˘

and

P2 :“
1
8

`
2δx0,y0

` δx0,y1
` δx0,y´1

` 2δx1,y0
` 2δx1,y2

˘

(i) The Ghoussoub-Kim-Lim [10] irreducible convex paving. Let c1 “ 1X“Y , c2 “ 1 ´ c1 “

1X‰Y , and notice that Pi is the unique optimal martingale transport plan for ci, i “ 1, 2. Then,

it follows that the corresponding Pi´irreducible convex paving according to the definition of

[10] are given by

CP1
px0q “ tx0u, CP1

px1q “ ri convty1, y´1, y2u,

and CP2
px0q “ ri convty1, y´1u, CP2

px1q “ ri convty0, y2u.

Figure 2 shows the extreme probabilities P1 and P2, and their associated irreducible convex

pavings map CP1
and CP2

.

(ii) Our irreducible convex paving. The irreducible components are given by

Ipx0q “ ri convpy1, y´1q and Ipx1q “ ri convpy1, y´1, y2q.

11
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Figure 2: The extreme probabilities and associated irreducible paving.

To see this, we use the characterization of Proposition 3.4. Indeed, as Mpµ, νq “ convpP1,P2q,

for any P P Mpµ, νq, P ! pP :“ P1`P2

2
, and suppPx Ă conv

`
supp pPx

˘
for x “ x0, x1. Then

Ipxq “ riconv
`
supp pPx

˘
for x “ x0, x1 (i.e. µ-a.s.) by Proposition 3.4.

Recall that the definition of the mapping I is given by a minimization problem on pT pµ, νqˆ

Nν . A pT pµ, νq function minimizing this problem (withNν :“ H P Nν) is pθ :“ lim infnÑ8 Tpnfn,

where fn :“ nf , pn :“ np for some p P Bf , and

fpxq :“ dist
`
x,Affpy1, y´1q

˘
` dist

`
x,Affpy1, y2q

˘
` dist

`
x,Affpy2, y´1q

˘
.

One can easily check that µrf s “ νrf s for any n ě 1: f, fn P C0. These functions separate

Ipx0q, Ipx1q and
`
Ipx0q Y Ipx1q

˘c.
Notice that in this example, we may as well take θ :“ 0, and Nν :“ ty´1, y0, y1, y2uc, which

minimizes the optimization problem as well.

3.2 Structure of polar sets

Recall the notations in Remark 3.5. Our second main result is:

Theorem 3.7. A Borel set N P BpΩq is Mpµ, νq´polar if and only if

N Ă tX P Nµu Y tY P Nνu Y tY R JθpXqu, for some pNµ, Nνq P Nµ ˆ Nν and θ P pT pµ, νq.

The proof is reported in Section 6. We conclude this section by reporting a duality result

which will be used for proof of Theorem 3.7. We emphasize that the primal objective of the
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accompanying paper De March [7] is to push further this duality result so as to be suitable for

the robust superhedging problem in financial mathematics.

Let c : Rd ˆ Rd ÝÑ R`, and consider the martingale optimal transport problem:

Sµ,νpcq :“ sup
PPMpµ,νq

Prcs. (3.6)

Notice from Proposition 2.11 (i) that Sµ,νpθq ď ν paµpθq for all θ P pT . We denote by Dmod
µ,ν pcq

the collection of all pϕ,ψ, h, θq in L1
`pµq ˆ L1

`pνq ˆ L0pRd,Rdq ˆ pT pµ, νq such that

Sµ,νpθq “ ν paµpθq, and ϕ‘ ψ ` hb ` θ ě c, on tY P AffKθ,tψ“8upXqu.

The last inequality is an instance of the so-called robust superhedging property. The dual

problem is defined by:

Imodµ,ν pcq :“ inf
pϕ,ψ,h,θqPDmod

µ,ν pcq
µrϕs ` νrψs ` ν paµpθq.

Notice that for any measurable function c : Ω ÝÑ R`, any P P Mpµ, νq, and any pϕ,ψ, h, θq P

Dmod
µ,ν pcq, we have Prcs ď µrϕs ` νrψs ` Prθs ď µrϕs ` νrψs ` Sµ,νpθq, as a consequence of

the above robust superhedging inequality, together with the fact that Y P AffKθ,tψ“8upXq,

Mpµ, νq-q.s. This provides the weak duality:

Sµ,νpcq ď Imodµ,ν pcq. (3.7)

The following result states that the strong duality holds for upper semianalytic functions. We

recall that a function f : Rd Ñ R is upper semianalytic if tf ě au is an analytic set for any

a P R. In particular, a Borel function is upper semianalytic.

Theorem 3.8. Let c : Ω Ñ R` be upper semianalytic. Then we have

(i) Sµ,νpcq “ Imodµ,ν pcq;

(ii) If in addition Sµ,νpcq ă 8, then existence holds for the dual problem Imodµ,ν pcq.

Remark 3.9. By allowing h to be infinite in some directions, orthogonal to AffKθ,tψ“8upXq,

together with the convention 8´8 “ 8, we may reformulate the robust superhedging inequality

in the dual set as ϕ ‘ ψ ` hb ` θ ě c pointwise.

3.3 The one-dimensional setting

In the one-dimensional case, the decomposition in irreducible components and the structure of

Mpµ, νq´polar sets were introduced in Beiglböck & Juillet [3] and Beiglböck, Nutz & Touzi

[4], respectively.

Let us see how the results of this paper reduce to the known concepts in the one dimensional

case. First, in the one-dimensional setting, Ipxq consists of open intervals (at most countable

number) or single points. Following [3] Proposition 2.3, we denote the full dimension compo-

nents pIkqkě1.
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We also have uniqueness of the Jθpxq from Proposition 3.7, as J “ J (see Proposition 3.10

below), and similarly to the map I, we introduce the corresponding sequence pJkqkě1, defined

this time in [4]. This Proposition is equivalent in dimension 1 to Theorem 3.2. Similar to [3],

we denote by µk and νk the restrictions of µ and ν to Ik and Jk, respectively. We define the

Beiglböck & Juillet (BJ)-irreducible components

pIBJ , JBJ q : x ÞÑ

$
&
%

pIk, Jkq if x P IBJk , for some k ě 1,
`
txu, txu

˘
if x R YkI

BJ
k .

Proposition 3.10. Let d “ 1. Then I “ IBJ , and J “ J “ JBJ , µ´ a.s.

Proof. By Proposition 3.4 (i)-(ii), we may find pP P Mpµ, νq such that Ősupp pPX “ cl IpXq, and

Ősupp pPX |BIpXq “ JzIpXq, µ´a.s. Notice that as JzIpRdq only consists in a countable set of

points, we have J “ J . By Theorem 3.2 in [4], we have Y P JBJpXq, Mpµ, νq´q.s. Therefore,

Y P JBJ pXq, pP´a.s. and we have JpXq Ă JBJpXq, µ´a.s.

On the other hand, let k ě 1. By the fact that uν ´ uµ ą 0 on Ik, together with the fact

that JkzIk is constituted with atoms of ν, for any Nν P Nν , Jk Ă convpJkzNνq. As µ “ ν out

of the components,

JBJpXq Ă convpJBJ pXqzNνq, µ´ a.s. (3.8)

Then by Theorem 3.2 in [4], as tY R JpXqu is polar, we may find Nν P Nν such that

JBJ pXqzNν Ă JpXq, µ´a.s. The convex hull of this inclusion, together with (3.8) gives

the remaining inclusion JBJ pXq Ă JpXq, µ´a.s.

The equality IpXq “ IBJpXq, µ´a.s. follows from the relative interior taken on the previous

equality. l

Proposition 3.11. Let d “ 1, and CpJq the set of convex functions on J . Then,

pT pµ, νq “
!ř

k 1tXPIkuTpk
fk : fk P CpJkq, pk P Bfk,

ř
kpνk ´ µkqpfkq ă 8

)
, Mpµ, νq´q.s.

Proof. As all functions we consider are null on the diagonal, equality on YkIk ˆ Jk implies

Mpµ, νq´q.s. equality by Theorem 3.2 in [4]. Let L be the set on the right hand side.

1. We first show Ă, for a ě 0, we denote La :“ tθ P L :
ř
kpνk ´ µkqpfkq ď au. Notice that

La contains TpCaq modulo Mpµ, νq´q.s. equality. We intend to prove that La is µbpw´Fatou

closed, so as to conclude that pTa Ă La, and therefore pT pµ, νq Ă L by the arbitrariness of a ě 0.

Let θn “
ř
k 1tXPIkuTpknf

n
k P La converging µbpw. By Proposition 2.6, θn ÝÑ θ :“ θ8,

µbpw. For k ě 1, let xk P Ik be such that θnpxk, ¨q ÝÑ θpxk, ¨q on domxk
θ, and set fk :“

θpxk, ¨q. By Proposition 5.5 in [4], fk is convex on Ik, finite on Jk, and we may find pk P Bfk such

that for x P Ik, θpx, ¨q “ Tpk
fkpx, ¨q. Hence, θ “

ř
k 1tXPIkuTpk

fk, and
ř
kpνk ´ µkqpfkq ď a

by Fatou’s Lemma, implying that θ P La, as required.

2. To prove the reverse inclusion Ą, let θ “
ř
k 1tXPIkuTpk

fk P L. Let f ǫk be a convex

function defined by f ǫk :“ fk on Jǫk “ Jk X tx P Jk : distpx, Jckq ě ǫu, and f ǫk afine on RzJǫk. Set

ǫn :“ n´1, f̄n “
řn
k“1

f ǫn

k , and define the corresponding subgradient in Bf̄n:

p̄n :“ pk ` ∇pf̄n ´ f εn

k q on Jεn

k , k ě 1, and p̄n :“ ∇f̄n on Rz
`

Yk J
εn

k

˘
.
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We have pν ´µqpf̄nq “
řn
k“1

pνk ´µkqpf ǫn

k q ď
ř
kpνk ´µkqpfkq ă 8. By definition, we see that

Tp̄n f̄n converges to θ pointwise on YkpIkq2 and to θ˚px, yq :“ lim inf ȳÑy θpx, ȳq on YkIk ˆ cl Ik
where, using the convention 8 ´ 8 “ 8, θ1 :“ θ ´ θ˚ ě 0, and θ1 “ 0 on YkpIkq2. For k ě 1,

set ∆l
k :“ θ1pxk, lkq, and ∆r

k :“ θ1pxk, lkq where Ik “ plk, rkq. For positiove ǫ ă rk´lk
2

, and

M ě 0, consider the piecewise affine function g
ǫ,M
k with break points lk ` ǫ and rk ´ ǫ, and:

g
ǫ,M
k plkq “ M ^ ∆l

k, g
ǫ,M
k prkq “ M ^ ∆r

k, g
ǫ,M
k plk ` ǫq “ 0, and g

ǫ,M
k prk ´ ǫq “ 0.

Notice that gǫ,Mk is convex, and converges pointwise to gMk :“ M ^ θ1p lk`rk

2
, ¨q on Jk, as ǫ Ñ 0,

with

pνk ´ µkqpgMk q “ νkrlkspM ^ ∆l
kq ` νkrrkspM ^ ∆r

kq

ď pνk ´ µkqrfks ´ pνk ´ µkqrpfkq˚s ď pνk ´ µkqrfks,

where pfkq˚ is the lower semi-continuous envelop of fk, then by the dominated convergence

theorem, we may find positive ǫn,Mk ă rk´lk
2n

such that

pνk ´ µkqpg
ǫ

n,M

k
,M

k q ď pνk ´ µkqpfkq ` 2´k{n.

Now let ḡn “
řn
k“1

g
ǫ

n,n

k
,n

k , and p̄1
n P Bḡn. Notice that Tp̄1

n
gn ÝÑ θ1 pointwise on YkIk ˆ Jk,

furthermore, pν ´ µqpḡnq ď
ř
kpνk ´ µkqpfkq ` 1{n ď

ř
kpνk ´ µkqpfkq ` 1 ă 8.

Then we have θn :“ Tp̄nf̄n ` Tp̄1
n
ḡn converges to θ1 pointwise on YkIk ˆ Jk, and there-

fore Mpµ, νq´q.s. by Theorem 3.2 in [4]. Since pν ´ µqpf̄n ` ḡnq is bounded, we see that

pθnqně1 Ă TpCaq for some a ě 0. Notice that θn may fail to converge µbpw. However, we may

use Proposition 2.7 to get a sequence pθn P convpθk, k ě nq, and pθ8 P Θµ such that pθn ÝÑ pθ8,

µbpw as n Ñ 8, and satisfies the same Mpµ, νq´q.s. convergence properties than θn. Then
pθ8 P pT pµ, νq, and pθ8 “ θ, Mpµ, νq´q.s. l

Remark 3.12. In the present one-dimensional setting, we have

ν paµpθq “
ř
kpνk ´ µkqpfkq for all θ P pT pµ, νq,

where the convex functions fk are induced by the characterization of Proposition 3.11.

4 The irreducible convex paving

4.1 Existence and uniqueness

Proof of Theorem 3.3 (i) The measurability follows from Lemma 3.1. We first prove the

existence of a minimizer for the problem (3.4). Let m denote the infimum in (3.4), and consider

a minimizing sequence pθn, N
n
ν qnPN Ă pT pµ, νq ˆNν with µrGpKθn,Nn

ν
qs ď m` 1{n. By possibly

normalizing the functions θn, we may assume that ν paµpθnq ď 1. Set

pθ :“
ř
ně1

2´nθn and pNν :“ Yně1N
n
ν P Nν .
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Notice that pθ is well-defined as the pointwise limit of a sequence of the nonnegative functions
pθN :“

ř
nďN 2´nθn. Since ν paµ

“pθN
‰

ď
ř
ně1

2´n ă 8 by convexity of ν paµ, pθN ÝÑ pθ,
pointwise, and pθ P T pµ, νq by Lemma 2.12, since any convex extraction of pθnqně1 still converges

to pθ. Since θ´1
n pt8uq Ă pθ´1pt8uq, it follows from the definition of pNν that m ` 1{n ě

µrGpKθn,Nn
ν

qs ě µrGpKpθ, pNν
qs, hence µrGpKpθ, pNν

qs “ m as pθ P pT pµ, νq, pNν P Nν .

(ii) For an arbitrary pθ,Nνq P pT pµ, νq ˆNν , we define θ̄ :“ θ` pθ P pT pµ, νq and N̄ν :“ pNν YNν ,

so that Kθ̄,N̄ν
Ă Kpθ, pNν

. By the non-negativity of θ and pθ, we have m ď µrG
`
Kθ̄,N̄ν

˘
s ď

µrG
`
Kpθ, pNν

˘
s “ m. Then G

`
Kθ̄,N̄ν

˘
“ G

`
Kpθ, pNν

˘
, µ-a.s. By (3.2), we see that, µ´a.s. Kθ̄,N̄ν

“

Kpθ, pNν
and Kθ̄,N̄ν

“ Kpθ, pNν
“ I. This shows that I Ă Kθ,Nν

, µ-a.s. l

4.2 Partition of the space in convex components

This section is dedicated to the proof of Lemma 3.1 (iii), which is an immediate consequence

of Proposition 4.1 (ii).

Proposition 4.1. Let θ P pT pµ, νq, and A P BpRdq. We may find Nµ P Nµ such that:

(i) for all x1, x2 R Nµ with Kθ,Apx1q XKθ,Apx2q ‰ H, we have Kθ,Apx1q “ Kθ,Apx2q;

(ii) if A P Nν, then x P Kθ,Apxq for x R Nµ, and up to a modification of Kθ,A on Nµ, Kθ,ApRdq

is a partition of Rd such that x P Kθ,Apxq for all x P Rd.

Proof. (i) Let Nµ be the µ´null set given by Proposition 2.10 for θ. For x1, x2 R Nµ, we

suppose that we may find ȳ P Kθ,Apx1q X Kθ,Apx2q. Consider y P clKθ,Apx1q, as Kθ,Apx1q is

open in its affine span, y1 :“ ȳ ` ǫ
1´ǫpȳ ´ yq P Kθ,Apx1q for 0 ă ǫ ă 1 small enough. Then

ȳ “ ǫy ` p1 ´ ǫqy1, and by Proposition 2.10, we get

ǫθpx1, yq ` p1 ´ ǫqθpx1, y
1q ´ θpx1, ȳq “ ǫθpx2, yq ` p1 ´ ǫqθpx2, y

1q ´ θpx2, ȳq

By convexity of domxi
θ, Kθ,Apxiq Ă domxi

θ Ă domθpxi, ¨q. Then θpx1, y
1q, θpx1, ȳq, θpx2, y

1q,

and θpx2, ȳq are finite and

θpx1, yq ă 8 if and only if θpx2, yq ă 8.

Therefore clKθ,Apx1qXdomθpx1, ¨q Ă domθpx2, ¨q. We have obviously clKθ,Apx2qXdomθpx2, ¨q Ă

domθpx2, ¨q as well. Subtracting A, we get

`
clKθ,Apx1q X domθpx1, ¨qzA

˘
Y
`
clKθ,Apx2q X domθpx2, ¨qzA

˘
Ă domθpx2, ¨qzA.

Taking the convex hull and using the fact that the relative face of a set is included in itself,

we see that conv
`
Kθ,Apx1q Y Kθ,Apx2q

˘
Ă conv

`
domθpx2, ¨qzA

˘
. Finally, as Kθ,Apx1q and

Kθ,Apx2q are convex sets intersecting in relative interior points and x2 P riKθ,Apx2q, it follows

from Lemma 9.1 that x2 P riconv
`
Kθ,Apx1q YKθ,Apx2q

˘
. Then by Proposition 2.1 (ii),

rfx2
conv

`
Kθ,Apx1q YKθ,Apx2q

˘
“ ri conv

`
Kθ,Apx1q YKθ,Apx2q

˘
“ conv

`
Kθ,Apx1q YKθ,Apx2q

˘
.
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Then, we have conv
`
Kθ,Apx1q Y Kθ,Apx2q

˘
Ă rfx2

conv
`
domθpx2, ¨qzA

˘
“ Kθ,Apx2q, as rfx2

is

increasing. Therefore Kθ,Apx1q Ă Kθ,Apx2q and by symmetry between x1 and x2, Kθ,Apx1q “

Kθ,Apx2q.

(ii) We suppose that A P Nν . First, notice that, as Kθ,ApXq is defined as the X´relative face

of some set, either x P Kθ,Apxq or Kθ,Apxq “ H for x P Rd by the properties of rfx. Consider

P P Mpµ, νq. By Proposition 3.2, PrY P clKθ,ApXqs “ 1. As supppPXq Ă clKθ,ApXq, µ-a.s.,

Kθ,ApXq is non-empty, which implies that x P Kθ,Apxq. Hence, tX P Kθ,ApXqu holds on the

set N0
µ :“ tsupppPXq Ć cl IpXqu P Nµ. Then we just need to have this property to replace Nµ

by Nµ YN0
µ P Nµ.

Finally, to get a partition of Rd, we just need to redefine Kθ,A on Nµ. If x P
Ť

x1RNµ

Kθ,Apx1q

then Kθ,Apx1q is independent of x1 such that x P Kθ,Apx1q by definition ofNµ. We set Kθ,Apxq :“

Kθ,Apx1q. Otherwise, if x R
Ť

x1RNµ

Kθ,Apx1q, we set Kθ,Apxq :“ txu which is trivially convex and

relatively open. With this definition, Kθ,ApRdq is a partition of Rd. l

5 Proof of the duality

For simplicity, we denote Valpξq :“ µrϕs ` νrψs ` ν paµpθq, for ξ :“ pϕ,ψ, h, θq P Dmod
µ,ν pcq.

5.1 Existence of dual optimizer

Lemma 5.1. Let c, cn : Ω ÝÑ R`, and ξn P Dmod
µ,ν pcnq, n P N, be such that

cn ÝÑ c, pointwise, and Valpξnq ÝÑ Sµ,νpcq ă 8 as n Ñ 8.

Then there exists ξ P Dmod
µ,ν pcq such that Valpξnq ÝÑ Valpξq as n Ñ 8.

Proof. Denote ξn :“ pϕn, ψn, hn, θnq, and observe that the convergence of Valpξnq implies

that the sequence
`
µpϕnq, νpψnq, ν paµpθnq

˘
n

is bounded, by the non-negativity of ϕn, ψn and

ν paµpθnq. We also recall the robust superhedging inequality

ϕn ‘ ψn ` hb
n ` θn ě cn, on tY P AffKθn,tψn“8upXqu, n ě 1. (5.9)

Step 1. By Komlòs Lemma together with Lemma 2.12, we may find a sequence ppϕn, pψn, pθnq P

convtpϕk, ψk, θkq, k ě nu such that

pϕn ÝÑ ϕ :“ pϕ
8
, µ´ a.s., pψn ÝÑ ψ :“ pψ

8
, ν ´ a.s., and

pθn ÝÑ rθ :“ pθ8 P pT pµ, νq, µb pw.

Set ϕ :“ 8 and ψ :“ 8 on the corresponding non-convergence sets, and observe that µrϕs `

νrψs ă 8, by the Fatou Lemma, and therefore Nµ :“ tϕ “ 8u P Nµ and Nν :“ tψ “ 8u P

Nν . We denote by pphn,pcnq the same convex extractions from tphk, ckq, k ě nu, so that the

sequence pξn :“ ppϕn, pψn,phn, pθnq inherits from (5.9) the robust superhedging property, as for
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θ1, θ1 P pT pµ, νq, ψ1, ψ2 P L1
`pRdq, and 0 ă λ ă 1, we have AffKλθ1`p1´λqθ2,tλψ1`p1´λqψ2“8u Ă

AffKθ1,tψ1“8u X AffKθ2,tψ2“8u:

pϕn ‘ pψn ` pθn ` phb
n ě pcn ě 0, pointwise on AffKpθn,t pψn“8u

pXq. (5.10)

Step 2. Next, notice that ln :“ pphb
n q´ P Θ for all n P N. By the convergence Proposition 2.7, we

may find convex combinations pln :“
ř
kěn λ

n
k lk ÝÑ l :“ pl8, µb pw. Updating the definition of

ϕ by setting ϕ :“ 8 on the zero µ´measure set on which the last convergence does not hold on

pBxdomlqc, it follows from (5.10), and the fact that AffKθ̄,tψ“8u Ă lim infnÑ8 AffKpθn,t pψn“8u
,

that

l “ pl8 ď lim inf
n

ÿ

kěn

λnk
`
pϕk ‘ pψk ` pθk

˘
ď ϕ ‘ ψ ` θ̄, pointwise on tY P AffKθ̄,tψ“8upXqu.

where θ̄ :“ lim infn
ř
kěn λ

n
k
pθk P pT pµ, νq. Consequently, updating also Nµ :“ Nµ Y tϕ “ 8u

which is still in Nµ, we see that dom l Ą pN c
µ ˆ N c

νq X domθ̄ X tY P AffKθ̄,tψ“8upXqu, and

therefore

Kθ̄,tψ“8upXq Ă domX l
1 Ă dom l1pX, ¨q, µ-a.s. (5.11)

Step 3. Let pphn :“
ř
kěn λ

n
k
phk. Then bn :“ pphb

n ` pln “
ř
kěn λ

n
kpphb

k q` defines a non-negative

sequence in Θ. By Proposition 2.7, we may find a sequence pbn “: rhb
n ` rln P convpbk, k ě nq

such that pbn ÝÑ b :“ pb8, µb pw, where b takes values in r0,8s. pbnpX, ¨q ÝÑ bpX, ¨q pointwise

on domXb, µ´a.s. Combining with (5.11), this shows that

rhb
n pX, ¨q ÝÑ pb ´ lqpX, ¨q pointwise on domXb XKθ̄,tψ“8upXq, µ´ a.s.

pb ´ lqpX, ¨q “ lim infn rhb
n pX, ¨q, pointwise on Kθ̄,tψ“8upXq (where l is a limit of ln), µ´a.s.

Clearly, on the last convergence set, pb ´ lqpX, ¨q ą ´8 on Kθ̄,tψ“8upXq, and we now argue

that pb ´ lqpX, ¨q ă 8 on Kθ̄,tψ“8upXq, therefore Kθ̄,tψ“8upXq Ă domXb, so that we deduce

from the structure of rhb
n that the last convergence holds also on AffKθ̄,tψ“8upXq:

rhb
n pX, ¨q ÝÑ pb ´ lqpX, ¨q “: hbpX, ¨q pointwise on Kθ̄,tψ“8upXq, µ´ a.s. (5.12)

Indeed, let x be an arbitrary point of the last convergence set, and consider an arbitrary

y P Kθ̄,tψ“8upxq. By the definition of Kθ̄,tψ“8u, we have x P riKθ̄,tψ“8upxq, and we may

therefore find y1 P Kθ̄,tψ“8upxq with x “ py ` p1 ´ pqy1 for some p P p0, 1q. Then, prhb
n px, yq `

p1 ´ pqrhb
n px, y1q “ 0. Sending n Ñ 8, by concavity of the lim inf, this provides ppb´ lqpx, yq `

p1 ´ pqpb ´ lqpx, y1q ď 0, so that pb´ lqpx, y1q ą ´8 implies that pb ´ lqpx, yq ă 8.

Step 4. Notice that by dual reflexivity of finite dimensional vector spaces, (5.12) defines a

unique hpXq in the vector space AffKθ̄,tψ“8upXq ´ X, such that pb ´ lqpX, ¨q “ hbpX, ¨q on

AffKθ̄,tψ“8upXq. At this point, we have proceeded to a finite number of convex combinations

which induce a final convex combination with coefficients pλ̄knqkěně1. denote ξ̄n :“
ř
kěn λ̄

k
nξk,

and set θ :“ θ̄8. Then, applying this convex combination to the robust superhedging inequality

(5.9), we obtain by sending n Ñ 8 that pϕ ‘ ψ ` hb ` θqpX, ¨q ě cpX, ¨q on AffKθ̄,tψ“8upXq,
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µ´a.s. and ϕ ‘ ψ ` hb ` θ “ 8 on the complement µ null-set. As θ is the liminf of a convex

extraction of ppθnq, we have θ ě pθ8 “ θ̄, and therefore AffKθ,tψ“8u Ă AffKθ̄,tψ“8u. This shows

that the limit point ξ :“ pϕ,ψ, h, θq satisfies the pointwise robust superhedging inequality

ϕ‘ ψ ` θ ` hb ě c, on tY P AffKθ,tψ“8upXqu. (5.13)

Step 5. By Fatou’s Lemma and Lemma 2.12, we have

µrϕs ` νrψs ` ν paµrθs ď lim inf
n

µrϕns ` νrψns ` ν paµrθns “ Sµ,νpcq. (5.14)

By (5.13), we have µrϕs`νrψs`Prθs ě Prcs for all P P Mpµ, νq. Then, µrϕs`νrψs`Sµ,νrθs ě

Sµ,νrcs. By Proposition 2.11 (i), we have Sµ,νrθs ď ν paµrθs, and therefore

Sµ,νrcs ď µrϕs ` νrψs ` Sµ,νrθs ď µrϕs ` νrψs ` ν paµrθs ď Sµ,νpcq,

by (5.14). Then we have Valpξq “ µrϕs ` νrψs ` ν paµrθs “ Sµ,νpcq and Sµ,νrθs “ νpaµrθs, so

that ξ P Dmod
µ,ν pcq. l

5.2 Duality result

We first prove the duality in the set USCb of all bounded upper semicontinuous functions

Ω Ñ R`. This is a classical result using the Hahn-Banach Theorem, the proof is reported for

completeness.

Lemma 5.2. Let f P USCb, then Sµ,νpfq “ Imodµ,ν pfq

Proof. We have Sµ,νpfq ď Imodµ,ν pfq by weak duality (3.7), let us now show the converse

inequality Sµ,νpfq ě Imodµ,ν pfq. By standard approximation technique, it suffices to prove the

result for bounded continuous f . We denote by ClpR
dq the set of continuous mappings Rd Ñ R

with linear growth at infinity, and by CbpR
d,Rdq the set of continuous bounded mappings

Rd ÝÑ Rd. Define

Dpfq :“
!

pϕ̄, ψ̄, h̄q P ClpR
dq ˆ ClpR

dq ˆ CbpR
d,Rdq : ϕ̄ ‘ ψ̄ ` h̄b ě f

)
,

and the associated Iµ,νpfq :“ infpϕ̄,ψ̄,h̄qPDpfq µpϕ̄q ` νpψ̄q. By Theorem 2.1 in Zaev [22], and

Lemma 5.3 below, we have

Sµ,νpfq “ Iµ,νpfq “ inf
pϕ̄,ψ̄,h̄qPDpfq

µpϕ̄q ` νpψ̄q ě Imodµ,ν pfq,

which provides the required result. l

Proof of Theorem 3.8 The existence of a dual optimizer follows from a direct application of

the compactness Lemma 5.1 to a minimizing sequence of robust superhedging strategies.

As for the extension of the duality result to non-negative upper semi-analytic functions, we

shall use the capacitability theorem of Choquet, similar to [17] and [4]. Let r0,8sΩ denote
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the set of all nonnegative functions Ω Ñ r0,8s, USA` the sublattice of upper semianalytic

functions, and USCb the sublattice of bounded upper semicontinuous fonctions. Note that

USCb is stable by infimum.

Recall that a USCb-capacity is a monotone map C : r0,8sΩ ÝÑ r0,8s, sequentially con-

tinuous upwards on r0,8sΩ, and sequentially continuous downwards on USCb. The Choquet

capacitability theorem states that a USCb´capacity C extends to USA` by:

Cpfq “ sup
 
Cpgq : g P USCb and g ď f

(
for all f P USA`.

In order to prove the required result, it suffices to verify that Sµ,ν and Imodµ,ν are USCb-capacities.

As Mpµ, νq is weakly compact, it follows from similar argument as in Prosposition 1.21, and

Proposition 1.26 in Kellerer [17] that Sµ,ν is a USCb-capacity. We next verify that Imodµ,ν is a

USCb-capacity. Indeed, the upwards continuity is inherited from Sµ,ν together with the com-

pactness lemma 5.1, and the downwards continuity follows from the downwards continuity of

Sµ,ν together with the duality result on USCb of Lemma 5.2. l

Lemma 5.3. Let c : Ω Ñ R`, and pϕ̄, ψ̄, h̄q P Dpcq. Then, we may find ξ P Dmod
µ,ν pcq such that

Valpξq “ µrϕ̄s ` νrψ̄s.

Proof. Let us consider pϕ̄, ψ̄, h̄q P Dpcq. Then ϕ̄ ‘ ψ̄ ` h̄b ě c ě 0, and therefore

ψ̄pyq ě fpyq :“ sup
xPRd

´ ϕ̄pxq ´ h̄pxq ¨ py ´ xq.

Clearly, f is convex, and fpxq ě ´ϕ̄pxq by taking value x “ y in the supremum. Hence

ψ̄ ´ f ě 0 and ϕ̄ ` f ě 0, implying in particular that f is finite on Rd. As ϕ̄ and ψ̄ have

linear growth at infinity, f is in L1pνq X L1pµq. We have f P Ca for a “ νrf s ´ µrf s ě 0. Then

we consider p P Bf and denote θ :“ Tpf . θ P T
`
Ca

˘
Ă pT pµ, νq. Then denoting ϕ :“ ϕ̄ ` f ,

ψ :“ ψ̄ ´ f , and h :“ h̄ ` p, we have ξ :“ pϕ,ψ, h, θq P Dmod
µ,ν pcq and

µrϕ̄s ` νrψ̄s “ µrϕs ` νrψs ` pν ´ µqrf s “ µrϕs ` νrψs ` νpaµrθs “ Valpξq.

l

6 Polar sets and maximum support martingale plan

6.1 The mapping J

Consider the optimization problems:

inf
pθ,Nν qP pT pµ,νqˆNν

µrGpRθ,Nν
qs, with Rθ,Nν

:“ cl conv
`
domθpX, ¨q X BIpXq XN c

ν

˘
, (6.15)

and

inf
pθ,Nν qP pT pµ,νqˆNν

µ
“
y P BIpXq X domθpX, ¨q XN c

ν

‰
for all y P Rd. (6.16)

20



These problems are well defined by the following measurability result, whose proof is reported

in Subsection 7.2.

Lemma 6.1. Let F : Rd ÝÑ K, universally measurable. For all γ P PpRdq, we may find

Nγ P Nγ such that 1Y PF pXq1XRNγ is Borel measurable, and if X P riF pXq convex, γ´a.s.,

then 1Y PBF pXq1XRNγ is Borel measurable as well.

By the same argument than that of the proof of existence and uniqueness in Theorem

3.3, we see that the problem (6.15), (resp. (6.16) for y P Rd) has an optimizer pθ˚, N˚
ν q P

T pµ, νqˆNν, (resp. pθ˚
y , N

˚
ν,yq P T pµ, νqˆNν). Furthermore, D :“ Rθ˚,N˚

ν
, (resp Dypxq :“ tyu

if y P BIpxq X domθ˚
y px, ¨q XN˚

ν,y, and H otherwise, for x P Rd) does not depend on the choice

of pθ˚, N˚
ν q, (resp. θ˚

y ) up to a µ´negligible modification.

We define J :“ DYI, and recall that for θ P pT pµ, νq, we denote JθpXq :“ domθpX, ¨qXJpXq.

Notice that if y P Rd is not an atom of ν, we may chose Nν,y containing y, which means that

Problem (6.16) is non-trivial only if y is an atom of ν. We denote atompνq, the (at most

countable) atoms of ν, and define the mapping J :“ pYyPatompνqDyq Y I,

Proposition 6.2. Let θ P pT pµ, νq, up to a modification on a µ´null set preserving Theorem

3.3 (iii), we have,

(i) J is convex valued, moreover Y P JpXq, and Y P JθpXq, Mpµ, νq´q.s.

(ii) I Ă J Ă Jθ Ă J Ă cl I,

(iii) J , Jθ, and J are constant on Ipxq, for all x P Rd.

Proof. We suppose that I is changed such that I satisfies Theorem 3.3 (iii). (i) For x P Rd,

Jpxq “ Dpxq Y Ipxq. Let y1, y2 P Jpxq, λ P p0, 1q, and set y :“ λy1 ` p1 ´ λqy2. If y1, y2 P Ipxq,

or y1, y2 P Dpxq, we get y P Jpxq by convexity of Ipxq, or Dpxq. Now, up to switching the

indices, we may assume that y1 P Ipxq, and y2 P DpxqzIpxq. As DpxqzIpxq Ă BIpxq, y P Ipxq,

as λ ą 0. Then y P Jpxq. Hence, J is convex valued.

Since domθ˚pX, ¨qzN˚
ν X cl IzI Ă Rθ˚,N˚

ν
, we have the inclusion domθ˚pX, ¨qzN˚

ν X clI Ă

Rθ˚,N˚
ν

Y I “ J . Then, as Y P domθ˚pX, ¨qzN˚
ν , and Y P cl IpXq, Y P JpXq, Mpµ, νq´q.s.

Let θ P pT pµ, νq, Y P dompX, θq, Mpµ, νq´q.s. Finally we get Y P dompX, θq X JpXq “

JθpXq, Mpµ, νq´q.s.

(ii) As Rθ,Nν
pXq Ă cl convBIpXq “ cl IpXq, J Ă cl I. By definition, Jθ Ă J , and I Ă J .

For y P atompνq, and θ0 P pT pµ, νq, by minimality, DypXq Ă domθ0pX, ¨qθ X BIpXq, µ´a.s.

Applying it for θ0 “ θ, we get Dy Ă domθpX, ¨q, and for θ0 “ θ˚, DypXq Ă JpXq, µ´a.s.

Taking the countable union: J Ă Jθ, µ´a.s. (This is the only inclusion that is not pointwise).

The we change J to I on this set to get this inclusion pointwise.

(iii) For θ0 P pT pµ, νq, we may apply Proposition 2.10. For some Nµ P Nµ, for x P N c
µ, for

y P BIpXq, y’:= x`y
2

P Ipxq. Then for any other x1 P Ipxq X N c
µ, 1

2
θ0px, yq ´ θ0px, y1q “

1

2
θ0px1, yq ´ θ0px1, y1q, in particular, y P domθpx, ¨q if and only if y P domθpx1, ¨q. Applying this

result to θ, θ˚, and θ˚
y for all y P atompνq, we get Nµ such that for any x P Rd, J , Jθ, and J

are constant on Ipxq X N c
µ. To get it pointwise, we redefine these mappings to this constant

value on Ipxq XNµ, or to Ipxq, if Ipxq XN c
µ “ H. The previous properties are preserved. l
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6.2 Structure of polar sets

Proof of Proposition 3.7 One implication is trivial as Y P JθpXq, Mpµ, νq´q.s. for all

θ P pT pµ, νq, by Proposition 6.2. We only focus on the non-trivial implication. For an Mpµ, νq-

polar set N , we have Sµ,νp81Bq “ 0, and it follows from the dual formulation of Theorem 3.8

that 0 “ Valpξq for some ξ “ pϕ,ψ, h, θq P Dmod
µ,ν p81Bq. Then,

ϕ ă 8, µ´ a.s., ψ ă 8, ν ´ a.s. and θ P pT pµ, νq,

As h is finite valued, and ϕ,ψ are non-negative functions, the superhedging inequality

ϕ ‘ ψ ` θ ` hb ě 81B on tY P AffKθ,tψ“8upXqu implies that

1tϕ“8u ‘ 1tψ“8u ` 1tpdomθqcu ě 1B on tY P AffKθ,tψ“8upXqu (6.17)

By Theorem 3.3 (ii), we have IpXq Ă Kθ,tψ“8upXq, µ´a.s. Then JpXq Ă AffIpXq Ă

Kθ,tψ“8upXq, which implies that

JθpXq :“ domθpX, ¨q X JpXq Ă domθpX, ¨q X AffKθ,tψ“8upXq, µ´ a.s. (6.18)

We denote Nµ :“ tφ “ 8u Y tJθpXq Ć domθpX, ¨q X AffKθ,tψ“8upXqu P Nµ, and Nν :“

tψ “ 8u P Nν . Then by (6.17), 1B “ 0 on ptφ “ 8uc ˆ tψ “ 8ucq X tY P domθpX, ¨q X

AffKθ,tψ“8upXqu, and therefore by (6.18), B Ă tX P Nµu Y tY P Nνu Y tY R JθpXqu. l

6.3 The maximal support probability

In order to prove the existence of a maximum support martingale transport plan, we introduce

the minimization problem.

M :“ sup
PPMpµ,νq

µrGpŐsuppPXqs. (6.19)

where we rely on the following measurability result whose proof is reported in Subsection 7.2.

Lemma 6.3. For P P PpΩq, the map ŐsuppPX is Borel-measurable, regardless of the choice of

the kernel PX . Furthermore, the map ŐsupppPX |BIpXqq is µ´measurable.

Proof of Proposition 3.4 (i) We procede in three steps.

Step 1: We first prove existence for the problem 6.19. Let pPnqně1 Ă Mpµ, νq be a maximizing

sequence. Then the measure pP :“
ř
ně1

2´n Pn P Mpµ, νq, and satisfies ŐsuppPnX Ă ŐsupppPX for

all n ě 1. Consequently µrGpŐsuppXP
n
Xqs ď µrGpŐsupppPXqs, and therefore M “ µrGpŐsupppPXqs.

Step 2: We next prove that ŐsuppPX Ă ŐsupppPX , µ-a.s. for all P P Mpµ, νq. Indeed, the

measure P :“
pP`P

2
P Mpµ, νq satisfies M ě µrGpŐsuppPXqs ě µrGpŐsupppPXqs “ M , implying

that GpŐsuppPXq “ GpŐsupppPXq, µ´a.s. The required result now follows from the inclusion

ŐsupppPX Ă ŐsuppPX .

Step 3: We finally prove that SpXq :“ ŐsupppPX “ cl IpXq, µ´a.s. By the previous step, we
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have supppPXq Ă SpXq, µ´a.s. Then tY R SpXqu is Mpµ, νq´polar. By Theorem 3.7, we see

that tY R SpXqu Ă tX P Nµu Y tY P Nνu Y tY R JθpXqu, or equivalently,

tY P SpXqu Ą tX R Nµu X tY P JθpXqzNνu, (6.20)

for some Nµ P Nµ, Nν P Nν , and θ P pT pµ, νq. Observe that (6.20) says that JθpXqzNν Ă SpXq,

µ-a.s. However, by 3.3 (ii), IpXq Ă conv
`
domθpX, ¨qzNν

˘
, µ´a.s. Then, since SpXq is closed

and convex, we see that cl IpXq Ă SpXq.

To obtain the reverse inclusion, we recall from Theorem 3.3 (i) that tY P cl IpXqu, Mpµ, νq´q.s.

In particular pPrY P cl IpXqs “ 1, implying that SpXq Ă cl IpXq, µ-a.s. as cl IpXq is closed

convex.

(ii) By the same argument as in (i), we may find pP1 P Mpµ, νq such that

M 1 :“ sup
PPMpµ,νq

µ
”
G
´
ŐsupppPX |BIpXqq

¯ı
“ µ

”
G
´
ŐsuppppP1

X |BIpXqq
¯ı
. (6.21)

We also have similarly that ŐsupppPX |BIpXqq Ă ŐsuppppP1
X |BIpXqq, µ-a.s. for all P P Mpµ, νq.

Then we prove similarly that S1pXq :“ ŐsuppppP1
X |BIpXqq “ DpXq, µ´a.s., where recall that D

is the optimizer for (6.15). Indeed, by the previous step, we have ŐsupppPX |BIpXqq Ă S1pXq,

µ´a.s. Then tY R S1pXq Y IpXqu is Mpµ, νq´polar. By Theorem 3.7, we see that tY R

S1pXq Y IpXqu Ă tX P Nµu Y tY P Nνu Y tY R JθpXq Y IpXqu, or equivalently,

tY P S1pXq Y IpXqu Ą tX R Nµu X tY P JθpXqzNνu, (6.22)

for some Nµ P Nµ, Nν P Nν , and θ P pT pµ, νq. Same than previously, we have JθpXqzNνzIpXq Ă

S1pXq, µ-a.s. Then, since S1pXq is closed and convex, we see that DpXq Ă S1pXq.

To obtain the reverse inclusion, we recall from Proposition 6.2 that tY P JpXqu, Mpµ, νq´q.s.

In particular pP˚rY P IpXq YDpXqs “ 1, implying that S1pXq Ă DpXq, µ-a.s.

Finally,
pP`pP1

2
is optimal for both problems (6.19), and (6.21). The remaining properties

follow from Proposition 6.2. l

6.4 Properties of the J-mappings

Proof of Remark 3.5 Let y P atompνq, by the same argument as in the proof of Proposition

3.4, we may find pP2
y P Mpµ, νq such that

M2 :“ sup
PPMpµ,νq

µ
”
PX

“
tyu X cl IpXq

‰
ą 0

ı
“ µ

”
pP2
X

“
tyu X cl IpXq

‰
ą 0

ı
. (6.23)

We denote S2pXq :“ supppP2
X |AffIpXqXtyu. Recall that Dy is the notation for the optimizer

of problem (6.16). We consider the set N :“
 
Y R pcl IpXqztyuq Y S2pXq

(
. N is polar as

Y P cl IpXq, q.s., and by definition of S2. Then N Ă tX P Nµu Y tY P Nνu Y tY R JθpXqu, or

equivalently,

 
Y R pcl IpXqztyuq Y S2pXq

(
Ą tX R Nµu X tY P JθpXqzNνu, (6.24)
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for some Nµ P Nµ, Nν P Nν, and θ P pT pµ, νq. Then DypXq Ă JθpXqzNν Ă cl IpXqztyuYS2pXq,

µ´a.s. Finally DypXq Ă S2pXq, µ´a.s.

On the other hand, S2 Ă Dy, µ´a.s., as if pP2
Xrtyus ą 0, we have θpX, yq ă 8, µ´a.s. at

the corresponding points. Hence, DypXq “ S2pXq, µ´a.s. Now if we sum up the countable

optimizers for y P atompνq, with the previous optimizers, then the probability pP we get is an

optimizer for (6.19), (6.21), and (6.23), for all y P Rd (the optimum is 0 if it is not an atom of

ν). The remaining properties follow from Proposition 6.2. l

7 Measurability of the irreducible components

7.1 Measurability of G

Proof of Lemma 3.1 (ii) As Rd is locally totally bounded, the Wijsman topology is locally

equivalent to the Hausdorff topology4, i.e. as n Ñ 8, Kn ÝÑ K for the Wijsman topology if

and only if Kn XBM ÝÑ K XBM for the Hausdorff topology, for all M ě 0.

We first prove that K ÞÝÑ dim AffK is a lower semi-continuous map K Ñ R. Let pKnqně1 Ă

K with dimension dn ď d1 ď d converging to K. We consider An :“ Aff Kn. As An is a sequence

of affine spaces, it is homeomorphic to a d` 1-uplet. Observe that the convergence of Kn allow

us to chose this d` 1-uplet to be bounded. Then up to taking a subsequence, we may suppose

that An converges to an affine subspace A of dimension less than d1. By continuity of the

inclusion under the Wijsman topology, K Ă A and dimK ď dimA ď d1.

We next prove that the mapping K ÞÑ gKpKq is continuous on tdimK “ d1u for 0 ď d1 ď d,

which implies the required measurability. Let pKnqně1 Ă K be a sequence with constant

dimension d1, converging to a d1´dimensional subset, K in K. Define An :“ AffKn and A :“

AffK, An converges to A as for any accumulation set A1 of An, K Ă A1 and dimA1 “ dimA,

implying that A1 “ A. Now we consider the map φn : An Ñ A, x ÞÑ projApxq. For all

M ą 0, it follows from the compactness of the closed ball BM that φn converges uniformly

to identity as n Ñ 8 on BM . Then, φnpKnq X BM ÝÑ K X BM as n Ñ 8, and therefore

λArφnpKn XBM qzKs ` λArKzφnpKnq XBM s ÝÑ 0. As the Gaussian density is bounded, we

also have

gArφnpKn XBM qs ÝÑ gArK XBM s.

We next compare gArφnpKn X BM qs to gKnpKn X BM q. As pφnq is a sequence of linear func-

tions that converges uniformly to identity, we may assume that φn is a C1´diffeomorphism.

Furthermore, its constant Jacobian Jn converges to 1 as n Ñ 8. Then,

ż

KnXBN

e´|φnpxq|2{2

p2πqd1{2
λKnpdxq “

ż

φnpKnXBM q

e´|y|2{2J´1
n

p2πqd1{2
λApdyq “ J´1

n gArφnpKn XBM qs.

4The Haussdorff distance on the collection of all compact subsets of a compact metric space pX , dq is defined by
dHpK1,K2q “ supxPX

|distpx,K1q ´ distpx,K2q| , for K1,K2 Ă X , compact subsets.
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As the Gaussian distribution function is 1-Lipschitz, we have

ˇ̌
ˇ
ż

KnXBM

e´|φnpxq|2{2

p2πqd1{2
λKnpdxq ´ gKnpKn XBM q

ˇ̌
ˇ ď λKnrKn XBM s|φn ´ IdA|8,

where | ¨ |8 is taken on Kn XBM . Now for arbitrary ǫ ą 0, by choosing M sufficiently large so

that gV rV zBM s ď ǫ for any d1´dimensional subspace V , we have

|gKnrKns ´ gK rKs| ď |gKnrKn XBM s ´ gArK XBM s| ` 2ǫ

ď

ˇ̌
ˇ̌gKnrKn XBM s ´

ż

KnXBM

C expp
´|φnpxq|2

2
qλKnpdxq

ˇ̌
ˇ̌

`
ˇ̌
J´1
n gArφnpKn XBMqs ´ gArK XBM s

ˇ̌
` 2ǫ ď 4ǫ,

for n sufficiently large, by the previously proved convergence. Hence Gd1 :“ G
ˇ̌
dim

´1td1u
is

continuous, implying that G : K ÞÝÑ
řd
d1“0

1
dim

´1td1upKqGd1 pKq is Borel-measurable. l

7.2 Further measurability of set-valued maps

This subsection is dedicated to the proof of Lemmas 3.1 (i), 6.1, and 6.3. In preparation for

the proofs, we start by giving some lemmas on measurability of set-valued maps.

Lemma 7.1. Let pFnqně1 Ă L0pRd,Kq. Then cl Yně1 Fn and Xně1Fn are measurable.

Proof. The measurability of the union is a consequence of Propositions 2.3 and 2.6 in Him-

melberg [12]. The measurability of the intersection follows from the fact that Rd is σ-compact,

together with Corollary 4.2 in [12]. l

Lemma 7.2. Let F P L0pRd,Kq. Then, cl convF , AffF , and cl rfXcl convF are measurable.

Proof. The measurability of cl convF is a direct application of Theorem 9.1 in [12].

We next verify that AffF is measurable. Since the values of F are closed, we deduce

from Theorem 4.1 in Wagner [21], that we may find a measurable x ÞÝÑ ypxq, such that

ypxq P F pxq if F pxq ‰ H, for all x P Rd. Then we may write AffF pxq “ cl conv cl YqPQ

`
ypxq`

q pF pxq ´ ypxqq
˘

for all x P Rd. The measurability follows from Lemmas 7.1, together with

Step (i) of the present proof.

We finally justify that cl rfXcl convF is measurable. We may assume that F takes convex

values. By convexity, we may reduce the definition of rfx to a sequential form:

cl rfxF pxq “ cl Yně1

"
y P Rd, y `

1
n

py ´ xq P F pxq and x´
1
n

py ´ xq P F pxq

*

“ cl Yně1

„"
y P Rd, y `

1
n

py ´ xq P F pxq

*
X

"
y P Rd, x´

1
n

py ´ xq P F pxq

*

“ cl Yně1

„ˆ
1

n` 1
x`

n

n` 1
F pxq

˙
X p´pn` 1qx ´ nF pxqq


,
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so that the required measurability follows from Lemma 7.1. l

We denote S the set of finite sequences of positive integers, and Σ the set of infinite

sequences of positive integers. Let s P S, and σ P Σ. We shall denote s ă σ whenever s is a

prefix of σ.

Lemma 7.3. Let pFsqsPS be a family of universally measurable functions Rd ÝÑ K with convex

image. Then the mapping cl conv
`

YσPΣ XsăσFs
˘

is universally measurable.

Proof. Let U the collection of universally measurable maps from Rd to K with convex image.

For an arbitrary γ P PpRdq, and F : Rd ÝÑ K, we introduce the map

γG˚rF s :“ inf
FĂF 1PU

γGrF 1s, where γGrF 1s :“ γ
“
G
`
F 1pXq

˘‰
for all F 1 P U .

Clearly, γG and γG˚ are non-decreasing, and it follows from the dominated convergence theo-

rem that γG, and thus γG˚, are upward continuous.

Step 1: In this step we follow closely the line of argument in the proof of Proposition 7.42 of

Bertsekas and Shreve [5]. Set F :“ cl conv
`

YσPΣ XsăσFs
˘
, and let pF̄nqn a minimizing sequence

for γG˚rF s. Notice that F Ă F̄ :“ Xně1F̄n P U , by Lemma 7.1. Then F̄ is a minimizer of

γG˚rF s.

For s, s1 P S, we denote s ď s1 if they have the same length |s| “ |s1|, and si ď s1
i for

1 ď i ď |s|. For s P S, let

Rpsq :“ cl conv Ys1ďs Yσąs1 Xs2ăσ Fs2 and Kpsq :“ cl conv Ys1ďs X
|s1|
j“1

Fs1
1
,...,s1

j
.

Notice that Kpsq is universally measurable, by Lemmas 7.1 and 7.2, and

Rpsq Ă Kpsq, cl Ys1ě1 Rps1q “ F, and cl Yskě1 Rps1, ..., sk´1, skq “ Rps1, ..., sk´1q.

By the upwards continuity of γG˚, we may find for all ǫ ą 0 a sequence σǫ P Σ s.t.

γG˚rF s ď γG˚rRpσǫ1qs ` 2´1ǫ, and γG˚rRpσk´1qs ď γG˚rRpσkqs ` 2´kǫ, k ě 1,

with the notation σεk :“ pσǫ1, . . . , σ
ε
kq. Recall that the minimizer F and Kpsq are in U for all

s P S. We then define the sequence Kǫ
k :“ F XKpσǫkq P U , k ě 1, and we observe that

pKǫ
kqkě1 decreasing, F ǫ :“ Xkě1K

ǫ
k Ă F, and γGrKǫ

ks ě γG˚rF s ´ ǫ “ γGrF s ´ ǫ, (7.25)

by the fact that Rpσǫkq Ă Kǫ
k. We shall prove in Step 2 that, for an arbitrary α ą 0, we may

find ε “ εpαq ď α such that (7.25) implies that

γGrF ǫs ě inf
kě1

γGrKǫ
ks ´ α ě γGrF s ´ ǫ´ α. (7.26)

Now let α “ αn :“ n´1, εn :“ ǫpαnq, and notice that F :“ cl conv Yně1 F
ǫn P U , with

F ǫn Ă F Ă F Ă F , for all n ě 1. Then, it follows from (7.26) that γGrF s “ γGrF s, and
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therefore F “ F “ F , γ´a.s. In particular, F is γ´measurable, and we conclude that F P U

by the arbirariness of γ P PpRdq.

Step 2: It remains to prove that, for an arbitrary α ą 0, we may find ε “ εpαq ď α such that

(7.25) implies (7.26). Notice that this is the point where we have to deviate from the argument

of [5] because γG is not downwards continuous, as the dimension can jump down.

Set An :“ tG
`
F pXq

˘
´ dimF pXq ď 1{nu, and notice that Xně1An “ H. Let n0 ě 1 such

that γrAn0
s ď 1

2

α
d`1

, and set ǫ :“ 1

2

1

n0

α
d`1

ą 0. Then, it follows from (7.25) that

γ
“

inf
n
GpKǫ

nq ´ dimF ď 0
‰

ď γ
“

inf
n
GpKǫ

nq ´GpF q ď n´1

0

‰
` γ

“
GpF q ´ dimF ď ´n´1

0

‰

ď n0

`
γ
“
GpF q

‰
´ γ

“
inf
n
GpKǫ

nq
‰˘

` γ
“
An0

‰

“ n0

`
γ
“
GpF q

‰
´ inf

n
γ
“
GpKǫ

nq
‰˘

` γ
“
An0

‰

ď n0ǫ`
1
2

α

d` 1
“

α

d ` 1
, (7.27)

where we used the Markov inequality and the monotone convergence theorem. Then:

γ
“

inf
n
GpKǫ

nq ´G
`
F ǫ

˘‰
ď γ

”
1tinfn GpKǫ

nq´dimFď0u

`
inf
n
GpKǫ

nq ´G
`
F ǫ

˘˘

`1tinfn GpKǫ
nq´dimFą0u

`
inf
n
GpKǫ

nq ´G
`
F ǫ

˘˘ı

ď γ
”
pd ` 1q1tinfn GpKǫ

nq´dimFď0u

`1tinfn GpKǫ
nq´dimFą0u

`
inf
n
GpKǫ

nq ´G
`
F ǫ

˘˘ı
.

We finally note that infnGpKǫ
nq´G

`
F ǫ

˘
“ 0 on tinfnGpKǫ

nq´dimF ą 0u. Then (7.26) follows

by substituting the estimate in (7.27). l

Proof of Lemma 3.1 (i) We consider the mappings θ : Ω Ñ R̄` such that θ “
řn
k“1

λk1C1

k
ˆC2

k

where n P N, the λk are non-negative numbers, and the C1
k , C

2
k are closed convex subsets of

Rd. We denote the collection of all these mappings F . Notice that clF for the pointwise limit

topology contains all L0
`pΩq. Then for any θ P L0

`pΩq, we may find a family pθsqsPΣ Ă F , such

that θ “ infσPΣ supsăσ θs. For θ P L0
`pΩq, and M ě 0, we denote Fθ : x ÞÝÑ cl conv domθpx, ¨q,

and Fθ,M : x ÞÝÑ cl conv θpx, ¨q´1pr0,M sq. Notice that Fθ “ cl Yně1 Fθ,n. Notice as well that

Fθ,M is Borel measurable for θ P F , and M ě 0, as it takes values in a finite set, from a finite

number of measurable sets. Let θ P L0
`pΩq, we consider the associated family pθsqsPΣ Ă F ,

such that θ “ infσPΣ supsăσ θs. Notice that Fθ,M “ cl conv
`

YσPΣ XsăσFθs,M

˘
is universally

measurable by Lemma 7.3, thus implying the universal measurability of Fθ “ cl domθpX, ¨q by

Lemma 7.1.

In order to justify the measurability of domXθ, we now define

F 0
θ :“ Fθ and F kθ :“ cl convpdomθpX, ¨q X Aff rfXF k´1

θ q, k ě 1.

Note that F kθ “ cl Yně1

`
cl conv YσPΣ XsăσFθs,n X Aff rfxF k´1

θ

˘
. Then, as F 0

θ is universally

measurable, we deduce that
`
F kθ

˘
kě1

are universally measurable, by Lemmas 7.2 and 7.3.
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As domXθ is convex and relatively open, the required measurability follows from the claim:

F dθ “ cl domXθ.

To prove this identity, we start by observing that F kθ pxq Ą cl domxθ. Since the dimension

cannot decrease more than d times, we have Aff rfxF dθ pxq “ AffF dθ pxq and

F d`1

θ pxq “ cl conv
`
domθpx, ¨q X Aff rfxF dθ pxq

˘
“ cl conv

`
domθpx, ¨q X AffrfxF d´1

θ pxq
˘

“ F dθ pxq.

i.e. pF d`1

θ qk is constant for k ě d. Consequently,

dim rfxconvpdomθpx, ¨q X Aff rfxF dθ pxqq “ dimF dθ pxq

ě dim convpdomθpx, ¨q X Aff rfxF dθ pxqq.

As dim conv
`
domθpx, ¨q X Aff rfxF dθ pxq

˘
ě dim rfxconv

`
domθpx, ¨q X Aff rfxF dθ pxq

˘
, we have

equality of the dimension of conv
`
domθpx, ¨q X Aff rfxF dθ pxq

˘
with its rfx. Then it follows from

Proposition 2.1 (ii) that x P ri conv
`
domθpx, ¨q X Aff rfxF dθ pxq

˘
, and therefore:

F dθ pxq “ cl conv
`
domθpx, ¨q X Aff rfxF dθ pxq

˘
“ cl ri conv

`
domθpx, ¨q X Aff rfxF dθ pxq

˘

“ cl rfxconv
`
domθpx, ¨q X Aff rfxF dθ pxq

˘
Ă cl domxθ.

Hence F dθ pxq “ cl domxθ.

Finally, Kθ,A “ domXpθ ` 81RdˆAq is universally measurable by the universal measurabil-

ity of domX . l

Proof of Lemma 6.1 We may find pFnqně1, Borel-measurable with finite image, converging

γ´a.s. to F . We denote Nγ P Nγ , the set on which this convergence does not hold. If for

ǫ ą 0, we denote F ǫkpXq :“ ty P Rd : distpy, FkpXq ď ǫqu, we have

F pxq “ Xiě1 lim inf
nÑ8

F 1{i
n pxq, for all x R Nγ .

Then, as 1Y PF pXq1XRNγ “ infiě1 lim infnÑ8 1
Y PF

1{i
n pXq

1XRNγ , the Borel-measurability of this

function follows from the Borel-measurability of each 1
Y PF

1{i
n pXq

.

Now we suppose that X P riF pXq convex, γ´a.s. Up to redefining Nγ , we may sup-

pose that this property holds on N c
γ , then BF pxq “ Xně1F pxqz

`
x ` n

n`1
pF pxq ´ xq

˘
, for

x R Nγ . We denote a :“ 1Y PF pXq1XRNγ . The result follows from the identity 1Y PBF pXq1XRNγ “

a´ supně1 a
`
X,X ` n

n`1
pY ´Xq

˘
. l

Proof of Lemma 6.3 Let KQ :“ tK “ convpx1, . . . , xnq : n P N, pxiqiďn Ă Qdu. Then

ŐsuppPx “ cl YNě1 XtK P KQ : ŐsuppPx XBN Ă Ku “ cl YNě1 XKPKQ
FNK pxq,

where FNK pxq :“ K if PxpBN XKq “ PxpBN q, and FNK pxq :“ Rd otherwise. As for any K P KQ

and N ě 1, the map PXpBN X Kq ´ PXpBN q is measurable, and therefore FNK is measurable.

The required measurability result follows from lemma 7.1.
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Now, in order to get the measurability of ŐsupppPX |BIpXqq, we have in the same way

ŐsupppPX |BIpXqq “ cl Yně1 XKPKQ
F 1N
K pxq,

where F 1N
K pxq :“ K if PxpBIpxq X BN X Kq “ PxpBIpxq X BN q, and F 1N

K pxq :“ Rd otherwise.

As PXpBIpXq X BN X Kq “ PXr1Y PBIpXq1XRNµ1Y RBN XKs, µ´a.s., where Nµ P Nµ is taken

from Lemma 6.1, PXpBIpXq XBN XKq is µ´measurable, as equal µ´a.s. to a Borel function.

Then similarly, PXpBIpXq X BN X Kq ´ PXpBIpXq X BN q is µ´measurable, and therefore

ŐsupppPX |BIpXqq is µ´measurable. l

8 Properties of tangent convex functions

8.1 x-invariance of the y-convexity for tangent convex func-

tions

We first report a convex analysis lemma.

Lemma 8.1. Let f : Rd Ñ R̄ be convex finite on some convex open subset U Ă Rd. We denote

f˚ : Rd Ñ R̄ the lower-semicontinuous envelop of f on U , then

f˚pyq “ lim
ǫŒ0

f
`
ǫx` p1 ´ ǫqy

˘
, for all px, yq P U ˆ clU.

Proof. f˚ is the lower semi-continuous envelop of f on U , i.e. the lower semi-continuous

envelop of f 1 :“ f ` 81Uc . Notice that f 1 is convex Rd ÝÑ R Y t8u. Then by Proposition

1.2.5 in Chapter IV of [13], we get the result as f “ f 1 on U . l

Proof of Proposition 2.10 The result is obvious in TpC1q, as the affine part depending on

x vanishes. We may use Nν “ H. Now we denote T the set on mappings in Θµ such that this

identity is verified. Then we have TpC1q Ă T .

We prove that T is µbpw´Fatou closed. Let pθnqn be a sequence in T converging µbpw

to θ P Θµ. We denote Nµ, the set in Nµ such that the identity does not hold for θn, for some

n, and such that the µbpw convergence holds. Let x1, x2 R Nµ, and ȳ P domx1
θX domx2

θ. Let

y1, y2 P domx1
θ, such that we have the convex combination ȳ “ λy1 ` p1 ´λqy2, and 0 ď λ ď 1.

Then for i “ 1, 2, θnpx1, yiq ÝÑ θpx1, yiq, and θnpx1, ȳq ÝÑ θpx1, ȳq, as n Ñ 8. Using the fact

that θn P T , for all n, we have

λθnpx1, y1q`p1´λqθnpx1, y2q´θnpx1, ȳq “ λθnpx2, y1q`p1´λqθnpx2, y2q´θnpx2, ȳq ě 0. (8.28)

Taking the limit n Ñ 8 gives that θ8px2, yiq ă 8, and yi P domθ8px2, ¨q. ȳ is interior to

domx1
θ, then for any y P domx1

θ, y1 :“ ȳ ` ǫ
1´ǫpȳ ´ yq P domx1

θ for 0 ă ǫ ă 1 small enough.

Then ȳ “ ǫy ` p1 ´ ǫqy1. As we may chose any y P domx1
θ, we have domx1

θ Ă domθ8px2, ¨q.

Then, we have

rfx2
convpdomx1

θ Y domx2
θq Ă rfx2

conv dom
`
θ8px2, ¨q

˘
“ domx2

θ. (8.29)
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By Lemma 9.1, as domx1
θ X domx2

θ ‰ H, convpdomx1
θ Y domx2

θq “ riconvpdomx1
θ Y

domx2
θq. In particular, convpdomx1

θYdomx2
θq is relatively open and contains x2, and therefore

rfx2
convpdomx1

θ Y domx2
θq “ convpdomx1

θ Y domx2
θq. Finally, by (8.29), domx1

θ Ă domx2
θ.

As there is a symmetry between x1, and x2, we have domx1
θ “ domx2

θ. Then we may go to

the limit in equation (8.28):

λθpx1, y1q ` p1 ´ λqθpx1, y2q ´ θpx1, ȳq “ λθpx2, y1q ` p1 ´ λqθpx2, y2q ´ θpx2, ȳq ě 0. (8.30)

Now, let y1, y2 P Rd, such that we have the convex combination ȳ “ λy1 ` p1 ´ λqy2, and

0 ď λ ď 1. we have three cases to study.

Case 1: yi R cl domx1
θ for some i “ 1, 2. Then, as the average ȳ of the yi is in domx1

θ, by

Proposition 2.1 (ii), me may find i1 “ 1, 2 such that yi1 R conv domθpx1, ¨q. Then λθpx1, y1q `

p1 ´ λqθpx1, y2q ´ θpx1, ȳq “ 8 ě 0. As domx1
θ “ domx2

θ, we may apply the same reasoning

to x2, we get λθpx1, y1q ` p1 ´ λqθpx2, y2q ´ θpx2, ȳq “ 8 ě 0. We get the result.

Case 2: y1, y2 P domx1
θ. This case is (8.30).

Case 3: y1, y2 P cl domx1
θ. The problem arises here if some yi is in the border Bdomx1

θ.

Let x R Nµ, we denote the lower semi-continuous envelop of θpx, ¨q in cl domxθ, θ˚px, yq :“

limǫŒ0 θpx, ǫx ` p1 ´ ǫqy1q, for y P cl domxθ, where the latest equality follows from Lemma

8.1 together with that fact that θpx, ¨q is convex on domxθ. Let y P cl domx1
θ, for 1 ě ǫ ą 0,

yǫ :“ ǫx1`p1´ǫqy P domx1
θ. By (8.28), p1´ǫqθnpx1, yq´θnpx1, y

ǫq “ p1´ǫqθnpx2, yq´θnpx2, y
ǫq.

Taking the lim inf, we have p1 ´ ǫqθpx1, yq ´ θpx1, y
ǫq “ p1 ´ ǫqθpx2, yq ´ θpx2, y

ǫq. Now making

ǫ Œ 0, we have θpx1, yq ´ θ˚px1, yq “ θpx2, yq ´ θ˚px2, yq. Then the jump of θpx, ¨q in y is

independent of x “ x1 or x2. Now for 1 ě ǫ ą 0, by (8.30)

λθpx1, y
ǫ
1q ` p1 ´ λqθpx1, y

ǫ
2q ´ θpx1, ȳ

ǫq “ λθpx2, y
ǫ
1q ` p1 ´ λqθpx2, y

ǫ
2q ´ θpx2, ȳ

ǫq ě 0.

By going to the limit ǫ Œ 0, we get

λθ˚px1, y1q ` p1 ´ λqθ˚px1, y2q ´ θ˚px1, ȳq “ λθ˚px2, y1q ` p1 ´ λqθ˚px2, y2q ´ θ˚px2, ȳq ě 0.

As the (nonnegative) jumps do not depend on x “ x1 or x2, we finally get

λθpx1, y1q ` p1 ´ λqθpx1, y2q ´ θpx1, ȳq “ λθpx2, y1q ` p1 ´ λqθpx2, y2q ´ θpx2, ȳq ě 0.

Finally, T is µbpw´Fatou closed, and convex. pT1 Ă T . As the result is clearly invariant when

the function is multiplied by a scalar, the Result is proved on pT pµ, νq. l

8.2 Compactness of tangent convex functions

Proof of Proposition 2.7 We first prove the result for θ “ pθnqně1 Ă Θ. Denote convpθq :“

tθ1 P ΘN : θ1
n P convpθk, k ě nq, n P Nu. Consider the minimization problem:

m :“ inf
θ1Pconvpθq

µrGpdomXθ
1
8qs, (8.31)
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where the measurability of GpdomXθ
1
8q follows from Lemma 3.1.

Step 1: We first prove the existence of a minimizer. Let pθ1kqkPN P convpθqN be a minimizing

sequence, and define the sequence pθ P convpθq by:

pθn :“ p1 ´ 2´nq´1
řn
k“1

2´kθ1k
n , n ě 1.

Then, domppθ8q Ă
Ş
kě1

dompθ1k
8q by the non-negativity of θ1, and we have the inclusion pθn ÝÑ

nÑ8
8
(

Ă
 
θ1k
n ÝÑ
nÑ8

8 for some k ě 1
(
. Consequently,

domx
pθ8 Ă conv

`Ş
kě1

domθ1k
8px, ¨q

˘
Ă

Ş
kě1

domxθ
1k
8 for all x P Rd.

Since pθ1kqk is a minimizing sequence, and pθ P convpθq, this implies that µrGpdomX
pθ8qs “ m.

Step 2: We next prove that we may find a sequence pyiqiě1 Ă L0pRd,Rdq such that

yipXq P AffpdomX
pθ8q and pyipXqqiě1 dense in AffdomX

pθ8, µ´ a.s. (8.32)

Indeed, it follows from Lemmas 3.1, and 7.2 that the map x ÞÑ Affpdomx
pθ8q is universally

measurable, and therefore Borel-measurable up to a modification on a µ´null set. Since its

values are closed and nonempty, we deduce from the implication piiq ùñ pixq in Theorem 4.2

of the survey on measurable selection [21] the existence of a sequence pyiqiě1 satisfying (8.32).

Step 3: Let mpdx, dyq :“ µpdxq b
ř
iě0

2´iδtyipxqupdyq. By the Komlòs lemma, we may find
rθ P convppθq such that rθn ÝÑ rθ8 P L0pΩq, m´a.s. Clearly, domx

rθ8 Ă domx
pθ8, and therefore

µ
“
GpdomX

rθ8q
‰

ď µ
“
Gpdomx

pθ8q
‰
, for all x P Rd. This shows that

GpdomX
rθ8q “ GpdomX

pθ8q, µ´ a.s. (8.33)

so that rθ is also a solution of the minimization problem (8.31). Moreover, it follows from (3.2)

that

ri domX
rθ8 “ ri domX

pθ8, and therefore Aff domX
rθ8 “ Aff domX

pθ8, µ´ a.s.

Step 4: Notice that the values taken by rθ8 are only fixed on an m´full measure set. By the

convexity of elements of Θ in the y´variable, domX
rθn has a nonempty interior in AffpdomX

rθ8q.

Then as µ´a.s., rθnpX, ¨q is convex, the following definition extends rθ8 to Ω:

rθ8px, yq :“ sup
 
a ¨ y ` b : pa, bq P Rd ˆ R, a ¨ ynpxq ` b ď rθ8px, ynpxqq for all n ě 0

(
.

This extension coincides with rθ8, in px, ynpxqq for µ´a.e. x P Rd, and all n ě 1 such that

ynpxq R BdomX
rθk for some k ě 1 such that domx

rθn has a nonempty interior in Affpdomx
rθ8q.

As for k large enough, BdomX
rθk is Lebesgue negligible in Affpdomx

rθ8q, the remaining ynpxq

are still dense in Affpdomx
rθ8q. Then, for µ´a.e. x P Rd, rθnpx, ¨q converges to rθ8px, ¨q on a

dense subset of Affpdomx
rθ8q. We shall prove in Step 6 below that

dom rθ8pX, ¨q has nonempty interior in AffpdomX
rθ8q, µ´ a.s. (8.34)

31



Then, by Theorem 9.3, rθnpX, ¨q ÝÑ rθ8pX, ¨q pointwise on AffpdomX
rθ8qzBdomrθ8pX, ¨q, µ´a.s.

Since domXθ8 “ domXθ8, and rθ converges to θ8 on domXθ8, µ´a.s., rθ converges to θ8 P Θ,

µbpw.

Step 5: Finally for general pθnqně1 Ă Θµ, we consider θ1
n, equal to θn, µbpw, such that θ1

n ď θn,

for n ě 1, from the definition of Θµ. Then we may find λkn, coefficients such that pθ1
n :“ř

kěn λ
k
nθ

1
k P convpθ1q converges µbpw to pθ8 P Θ. We denote pθn :“

ř
kěn λ

k
nθk P convpθq,

pθn “ pθ1
n, µbpw, and pθn ě pθ1

n. By Proposition 2.6 (iii), pθ converges to pθ8, µbpw. The

Proposition is proved.

Step 6: In order to prove (8.34), suppose to the contrary that there is a set A such that µrAs ą 0

and domrθ8px, ¨q has an empty interior in Affpdomx
rθ8q for all x P A. Then, by the density of

the sequence pynpxqqně1 stated in (8.32), we may find for all x P A an index ipxq ě 0 such that

pypxq :“ yipxqpxq P ri domx
rθ8, and rθ8px, pypxqq “ 8. (8.35)

Moreover, since ipxq takes values in N, we may reduce to the case where ipxq is a constant

integer, by possibly shrinking the set A, thus guaranteeing that py is measurable. Define the

measurable function on Ω:

θ0
npx, yq :“ distpy, Lnxq with Lnx :“

 
y P Rd : rθnpx, yq ă rθnpx, pypxqq

(
. (8.36)

Since Lnx is convex, and contains x for n sufficiently large by (8.35), we see that

θ0
n is convex in y and θ0

npx, yq ď |x ´ y|, for all px, yq P Ω. (8.37)

In particular, this shows that θ0
n P Θ. By Komlòs Lemma, we may find

pθ0
n :“

ř
kěn λ

n
kθ

0
k P convpθ0q such that pθ0

n ÝÑ pθ0
8, m´ a.s.

for some non-negative coefficients pλnk , k ě nqně1 with
ř
kěn λ

n
k “ 1. By convenient extension

of this limit, we may assume that pθ0
8 P Θ. We claim that

pθ0
8 ą 0 on Hx :“ thpxq ¨ py ´ pypxqq ą 0u, for some hpxq P Rd. (8.38)

We defer the proof of this claim to Step 7 below and we continue in view of the required

contradiction. By definition of θ0
n together with (8.37), we compute that

θ1
npx, yq :“

ÿ

kěn

λnk
rθkpx, yq ě

ÿ

kěn

λnk
rθkpx, pypxqq1tθ0

ną0u ě
ÿ

kěn

λnk
rθkpx, pypxqq

θ0
kpx, yq

|x ´ y|

ě
pθ0
npx, yq

|x ´ y|
inf
kěn

rθkpx, pypxqq.

By (8.35) and (8.38), this shows that the sequence θ1 P convpθq satisfies

θ1
npx, ¨q ÝÑ 8, on Hx, for all x P A.

We finally consider the sequence rθ1 :“ 1

2
prθ`θ1q P convpθq. Clearly, domrθ1

8pX, ¨q Ă domrθ8pX, ¨q,

and it follows from the last property of θ1 that domrθ1

8px, ¨q Ă Hc
x X domrθ8px, ¨q for all
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x P A. Notice that pypxq lies on the boundary of the half space Hx and, by (8.35), pypxq P

ridomx
rθ8. Then Gpdomx

rθ1

8q ă Gpdomx
rθ8q for all x P A and, since µrAs ą 0, we deduce

that µ
“
GpdomX

rθ1

8q
‰

ă µ
“
GpdomX

rθ8q
‰
, contradicting the optimality of rθ, by (8.33), for the

minimization problem (8.31).

Step 7: It remains to justify (8.38). Since rθnpx, ¨q is convex, it follows from the Hahn-Banach

separation theorem that:

rθnpx, ¨q ě rθnpx, pypxqq on Hn
x :“

 
y P Rd : hnpxq ¨ py ´ pypxqq ą 0

(
, for some hnpxq P Rd,

so that it follows from (8.36) that Lnx Ă pHn
x qc, and

θ0
npx, yq ě dist

`
y, pHn

x qc
˘

“
“`
y ´ pypxq

˘
¨ hnpxq

‰`
.

Denote gx :“ g
domx

pθ8
the Gaussian kernel restricted to the affine span of domx

pθ8, and Brpx0q

the corresponding ball with radius r, centered at some point x0. By (8.35), we may find rx so

that Bx
r :“ Brppypxqq Ă ri domx

rθ8 for all r ď rx, and
ż

Bx
r

θ0
npx, yqgxpyqdy ě

ż

Bx
r

“`
y ´ pypxq

˘
¨ hnpxq

‰`
gxpyqdy ě min

Bx
r

gx

ż

Brp0q
py ¨ e1q`dy “: brx ą 0,

where e1 is an arbitrary unit vector of the affine span of domx
pθ8. Then we have the inequalityş

Bx
r

pθ0
npx, yqgxpyqdy ě brx, and since pθ0

n has linear growth in y by (8.37), it follows from the

dominated convergence theorem that
ş
Br

x

pθ0
8px, yqgpdyq ě brx ą 0, and therefore pθ0

8px, yrxq ą 0

for some yrx P Br
x. From the arbitrariness of r P p0, rxq, We deduce (8.38) as a consequence of

the convexity of pθ0px, ¨q. l

Proof of Proposition 2.6 (iii) We need to prove the existence of some

θ1 P Θ such that θ8 “ θ1, µbpw, and θ8 ě θ1. (8.39)

For simplicity, we denote θ :“ θ8. Let

F 1 :“ cl conv domθpX, ¨q, F k :“ cl conv
`
domθpX, ¨q X Aff rfXF k´1

˘
, k ě 2,

and F :“ Yně1pFnzcl rfXFnq Y cldomXθ.

Fix some sequence εn Œ 0, and denote θ˚ :“ lim infnÑ8 θ
`
X, εnX ` p1 ´ εnqY

˘
, and

θ1 :“
“
81Y RF pXq ` 1Y Pcl domXθθ˚

‰
1XRNµ ,

where Nµ P Nµ is chosen such that 1Y PF kpXq1XRNµ are Borel measurable for all k from Lemma

6.1, and θpx, ¨q (resp. θnpx, ¨q) is convex finite on domxθ (resp. domxθn), for x R Nµ. Conse-

quently, θ1 is measurable. In the following steps, we verify that θ1 satisfies (8.39).

Step 1: We prove that θ1 P Θ. Indeed, θ1 P L0
`pΩq, and θ1pX,Xq “ 0. Now we prove that

θ1px, ¨q is convex for all x P Rd. For x P Nµ, θ1px, ¨q “ 0. For x R Nµ, θpx, ¨q is convex finite

on domxθ, then by the fact that domxθ is a convex relatively open set containing x, it follows
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from Lemma 8.1 that θ˚px, ¨q “ limnÑ8 θ
`
x, εnx ` p1 ´ εnq ¨

˘
is the lower semi-continuous

envelop of θpx, ¨q on cldomxθ. We now prove the convexity of θ1px, ¨q on all Rd. We denote
pF pxq :“ F pxqzcl domxθ so that Rd “ F pxqc Y pF pxq Y cl domxθ. Now, let y1, y2 P Rd, and

λ P p0, 1q. If y1 P F pxqc, the convexity inequality is verified as θ1px, y1q “ 8. Moreover, θ1px, ¨q

is constant on pF pxq, and convex on cl domxθ. We shall prove in Steps 4 and 5 below that

F pxq is convex, and rfxF pxq “ domxθ. (8.40)

In view of Proposition 2.1 (ii), this implies that the sets pF pxq and cl domxθ are convex. Then we

only need to consider the case when y1 P pF pxq, and y2 P cl domxθ. By Proposition 2.1 (ii) again,

we have ry1, y2q Ă pF pxq, and therefore λy1 ` p1 ´ λqy2 P pF pxq, and θ1px, λy1 ` p1 ´ λqy2q “ 0,

which guarantees the convexity inequality.

Step 2: We next prove that θ “ θ1, µbpw. By the second claim in (8.40), it follows that

θ˚pX, ¨q is convex finite on domXθ, µ´a.s. Then as a consequence of Proposition 2.4 (ii),

we have domXθ
1 “ domXp81Y RF pXqq X domXpθ˚1Y Pcl domXθq, µ´a.s. The first term in this

intersection is rfXF pXq “ domXθ. The second contains domXθ, as it is the domX of a function

which is finite on domXθ, which is convex relatively open, containing X. Finally, we proved

that domXθ “ domXθ
1, µ´a.s. Then θ1pX, ¨q is equal to θ˚pX, ¨q on domXθ, and therefore,

equal to θpX, ¨q, µ´a.s. We proved that θ “ θ1, µbpw.

Step 3: We finally prove that θ1 ď θ pointwise. We shalll prove in Step 6 below that

domθpX, ¨q Ă F. (8.41)

Then, 81Y RF pXq1XRNµ ď θ, and it remains to prove that

θpx, yq ě θ˚px, yq for all y P cl domxθ, x R Nµ.

To see this, let x R Nµ. By definition of Nµ, θnpx, ¨q ÝÑ θpx, ¨q on domxθ. Notice that θpx, ¨q

is convex on domxθ, and therefore as a consequence of Lemma 8.1,

θ˚px, yq “ lim
ǫŒ0

θ
`
x, ǫx` p1 ´ ǫqy

˘
, for all y P cl domxθ.

Then yǫ :“ p1´ǫqy`ǫx P domxθn, for ε P p0, 1s, and n sufficiently large by (i) of this Proposition,

and therefore p1 ´ ǫqθnpx, yq ´ θnpx, yǫq ě p1 ´ ǫqθ1
npx, yq ´ θ1

npx, yǫq ě 0, for θ1
n P Θ such that

θ1
n “ θn, µbpw, and θn ě θ1

n. Taking the lim inf as n Ñ 8, we get p1 ´ ǫqθpx, yq ´ θpx, yǫq ě 0,

and finally θpx, yq ě limǫŒ0 θ
`
x, ǫx` p1 ´ ǫqy

˘
“ θ1px, yq, by sending ǫ Œ 0.

Step 4: (First claim in (8.40)) Let x0 P Rd, let us prove that F px0q is convex. Indeed, let

x, y P F px0q, and 0 ă λ ă 1. Since cl domxθ is convex, and Fnpx0qzcl rfXFnpx0q is convex by

Proposition 2.1 (ii), we only examine the following non-obvious cases:

‚ Suppose x P Fnpx0qzcl rfx0
Fnpx0q, and y P F ppx0qzcl rfx0

F ppx0q, with n ă p. Then as

F ppx0qzcl rfx0
F ppx0q Ă cl rfx0

Fnpx0q, and λx` p1 ´λqy P Fnpx0qzcl rfx0
Fnpx0q by Proposition

2.1 (ii).

‚ Suppose x P Fnpx0qzcl rfx0
Fnpx0q, and y P cl domx0

θ, then as cl domx0
θ Ă cl rfx0

Fnpx0q,

this case is handled similar to previous case.
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Step 5: (Second claim in (8.40)). We have domXθ Ă F pXq, and therefore domXθ Ă rfXF pXq.

Now we prove by induction on k ě 1 that rfXF pXq Ă YněkpFnzcl rfXFnq Y cl domXθ. The

inclusion is trivially true for k “ 1. Let k ě 1, we suppose that the inclusions holds for k,

hence rfXF pXq Ă YněkpFnzcl rfXFnq Y cl domXθ. As YněkpFnzcl rfXFnq Y cl domXθ Ă F k.

Applying rfX gives

rfXF pXq Ă rfX
”

Yněk pFnzcl rfXFnq Y cl domXθ
ı

“ rfX
”
F k X YněkpFnzcl rfXFnq Y cl domXθ

ı

“ rfXF k X rfX
”

Yněk pFnzcl rfXFnq Y cl domXθ
ı

Ă cl rfXF k X YněkpFnzcl rfXFnq Y cl domXθ

Ă Yněk`1pFnzcl rfXFnq Y cl domXθ.

Then the result is proved for all k. In particular we apply it for k “ d ` 1. Recall from

the proof of Lemma 3.1 that for n ě d ` 1, Fn is stationary at the value cl domXθ. Then

Yněd`1pFnzcl rfXFnq “ H, and rfXF pXq Ă rfXcl domXθ “ domXθ. The result is proved.

Step 6: We finally prove (8.41). Indeed, domθpX, ¨q Ă F 1 by definition. Then

domθpX, ¨q Ă F 1zAffF 1 Y
`

Y2ďkďd`1 pdomθpX, ¨q X Aff rfXF k´1qzAffF k
˘

Y F d`1

Ă F 1zclF 1 Y
`

Ykě2 cl convpdomθpX, ¨q X Aff rfXF k´1qzclF k
˘

Y cl domXθ

“ Ykě1F
kzclF k Y cl domXθ “ F.

l

9 Some convex analysis results

We start by proving the required properties of the notion of relative face.

Proof of Proposition 2.1 (i) is an easy exercise. As for (ii), we first prove that rfaA “

riA ‰ H iff a P riA. We suppose that rfaA “ riA ‰ H. The non-emptiness implies by (i)

that a P A, and therefore a P rfaA “ riA. Now we suppose that a P riA. Then for x P riA,“
x, a ´ ǫpx ´ aq

‰
Ă riA Ă A, for some ǫ ą 0, and therefore riA Ă rfaA. On the other hand, by

(9.43), riA “ tx P Rd : x P px1, x0s, for some x0 P riA, and x1 P Au. Taking x0 :“ a P riA, we

have the remaining inclusion rfaA Ă riA.

We now prove that rfaA is convex. We consider x, y P rfaA and λ P r0, 1s. We consider an

ǫ ą 0 such that
`
a´ ǫpx´aq, x` ǫpx´aq

˘
Ă A and

`
a´ ǫpy´aq, y` ǫpy´aq

˘
Ă A. Then if we

write z “ λx` p1 ´ λqy,
`
a´ ǫpz ´ aq, z ` ǫpz ´ aq

˘
Ă A by convexity of A, because a, x, y P A.

In order to prove that rfaA is relatively open, we consider x, y P rfaA, and we verify that`
x´ ǫpy ´ xq, y ` ǫpy ´ xq

˘
Ă rfaA for some ǫ ą 0. Consider the two alternatives:

Case 1: If a, x, y are on a line. If a “ x “ y, then the required result is obvious. Otherwise,
`
a´ ǫpx´ aq, x ` ǫpx ´ aq

˘
Y
`
a ´ ǫpy ´ aq, y ` ǫpy ´ aq

˘
Ă rfaA
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This union is open in the line and x and y are interior to it. We can find ǫ1 ą 0 such that`
x´ ǫ1py ´ xq, y ` ǫ1py ´ xq

˘
Ă rfaA.

Case 2: If a, x, y are not on a line. Let ǫ ą 0 be such that
`
a ´ 2ǫpx ´ aq, x ` 2ǫpx ´ aq

˘
Ă A

and
`
a´ 2ǫpy´aq, y` 2ǫpy´aq

˘
Ă A. Then x` ǫpx´aq P rfaA and a´ ǫpy´aq P rfaA. Then,

if we take λ :“ ǫ
1`2ǫ

,

λpa ´ ǫpy ´ aqq ` p1 ´ λqpx ` ǫpx ´ aqq “ p1 ´ λqp1 ` ǫqx´ λǫy “ x` λǫpy ´ xq

Then x` λǫpx´ yq P rfaA and symmetrically, y ` λǫpy ´ xq P rfaA by convexity of rfaA. And

still by convexity,
`
x´ ǫ1py ´ xq, y ` ǫ1py ´ xq

˘
Ă rfaA for ǫ1 :“ ǫ2

1`2ǫ
ą 0.

(v) We will prove these two results by a recurrence on the dimension of the space d. First if

d “ 0 the results are trivial. Now we suppose that the result is proved for any d1 ă d, let us

prove it for dimension d.

Case 1: a P riA. This case is trivial as rfaA “ riA and A Ă cl riA “ cl rfaA because of the

convexity of A. Finally Azcl rfaA “ H which makes it trivial.

Case 2: a R riA. Then a P BA and there exists a hyperplan support H to A in a because of

the convexity of A. We will write the equation of the corresponding half-space containing A,

E : c ¨ x ď b with c P Rd and b P R. As x P rfaA implies that ra ´ ǫpx ´ aq, x ` ǫpx ´ aqs Ă A

for some ǫ ą 0, we have pa ´ ǫpx ´ aqq ¨ c ď b and px ` ǫpx ´ aqq ¨ c ď b. These equations are

equivalent using that a P H and thus a ¨ c “ b to ´ǫpx ´ aq ¨ c ď 0 and p1 ` ǫqpx ´ aq ¨ c ď 0.

We finally have px´ aq ¨ c “ 0 and x P H. We proved that rfaA Ă H.

Now using (iii) together with the fact that rfaA Ă H and a P H affine, we have

rfapA XHq “ rfaAX rfaH “ rfaA XH “ rfaA.

Then we can now have the recurrence hypothesis on AXH because dimH “ d´1 and AXH Ă

H is convex. Then we have A X Hzcl rfaA which is convex and if x0 P A X Hzcl rfapA X Hq,

y0 P A XH and if λ P p0, 1s then λx0 ` p1 ´ λqy0 P Azcl rfapA XHq.

First Azcl rfaA “ pAzHq Y pA X Hzcl rfaAq, let us show that this set is convex. The two

sets in the union are convex (AzH “ AX pEzHq), so we need to show that a non trivial convex

combination of elements coming from both sets is still in the union. We consider x P AzH,

y P AX Hzcl rfaA and λ ą 0, let us show that z :“ λx ` p1 ´ λqy P pAzHq Y pA XHzcl rfaAq.

As x, y P A (cl rfaA Ă A because A is closed), z P A by convexity of A. We now prove z R H,

z ¨ c “ λx ¨ c ` p1 ´ λqy ¨ c “ λx ¨ c` p1 ´ λqb ă λb ` p1 ´ λqb “ b.

Then z is in the strict half space: z P EzH. Finally z P AzH and Azcl rfaA is convex.

Let us now prove the second part: we consider x0 P Azcl rfaA, y0 P cl rfaA and λ P p0, 1s and

write z0 :“ λx0 ` p1 ´ λqy0.

Case 2.1: x0, y0 P H. We apply the induction hypothesis.

Case 2.2: x0, y0 P AzH. Impossible because rfaA Ă H and cl rfaA Ă clH “ H. y0 P H.

Case 2.3: x0 P AzH and y0 P H. Then by the same computation than the proof of convexity,

z0 P AzH Ă Azcl rfaA.
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(vi) We first prove the equivalence, we suppose that a P riA. As by the convexity of A,

riA “ riclA, rfaclA “ riclA, and therefore cl rfaclA “ clA. Finally, taking the dimension,

we have dimpcl rfaclAq “ dimpAq. In this case we proved as well that cl rfaclA “ cl ri clA “

clA “ cl rfaA, the last equality coming from the fact that riA “ rfaA as a P riA.

Now we suppose that a R riA. Then a P BclA, and rfaclA Ă BclA. Taking the dimension

(in the local sense this time), and by the fact that dim BclA “ dim BA ă dimA, we have

dimpcl rfaclAq ă dimpAq (as cl rfaclA is convex, the two notions of dimension coincide). l

We next report a result on the union of intersecting relative interiors of convex subsets

which was used in the proof of Proposition 4.1. We shall use the following characterization of

the relative interior of a convex subset K of Rd:

riK “
 
x P Rd : x´ ǫpx1 ´ xq P K for some ǫ ą 0, for all x1 P K

(
(9.42)

“
 
x P Rd : x P px1, x0s, for some x0 P riK, and x1 P K

(
. (9.43)

Lemma 9.1. Let K1,K2 Ă Rd be convex with riK1 X riK2 ‰ H. Then convpriK1 Y riK2q “

ri convpK1 YK2q.

Proof. We fix y P riK1 X riK2.

Let x P convpriK1 YriK2q, we may write x “ λx1 `p1´λqx2, with x1 P riK1, x2 P riK2, and

0 ď λ ď 1. If λ is 0 or 1, we will suppose then that 0 ă λ ă 1. Then for x1 P convpK1 Y K2q,

we may write x1 “ λ1x1
1 ` p1 ´ λ1qx1

2, with x1
1 P K1, x1

2 P K2, and 0 ď λ1 ď 1. We will use y as

a center as it is in both the sets. For all the variables, we add a bar on it when we subtract y,

for example x̄ :“ x´ y. The geometric problem is the same when translated with y,

x̄´ ǫpx̄1 ´ x̄q “ λ

ˆ
x̄1 ´ ǫ

ˆ
λ1

λ
x̄1

1 ´ x̄1

˙˙
` p1 ´ λq

ˆ
x̄2 ´ ǫ

ˆ
1 ´ λ1

1 ´ λ
x̄1

2 ´ x̄2

˙˙
. (9.44)

However, as x̄1 and x̄1
1 are in K1 ´ y, as it is a convex and 0 is an interior point, ǫpλ

1

λ
x̄1

1 ´ x̄1q P

K1 ´ y for ǫ small enough. Then as x̄1 is interior to K1 ´ y as well, x̄1 ´ ǫpλ
1

λ
x̄1

1 ´ x̄1q P K1 ´ y

as well. By the same reasoning, x̄2 ´ ǫp1´λ1

1´λ x̄
1
2 ´ x̄2q P K2 ´ y. Finally, by (9.44), for ǫ small

enough, x ´ ǫpx1 ´ xq P convpK1 YK2q. By (9.42), x P ri convpK1 YK2q.

Now let x P ri convpK1 YK2q. We use again y as an origin with the notation x̄ :“ x´y. As

x̄ is interior, we may find ǫ ą 0 such that p1 ` ǫqx̄ P convpK1 YK2q. We may write p1 ` ǫqx̄ “

λx̄1 `p1´λqx̄2, with x̄1 P K1 ´y, x̄2 P K2 ´y, and 0 ď λ ď 1. Then x̄ “ λ 1

1`ǫ x̄1 `p1´λq 1

1`ǫ x̄2.

By (9.43), 1

1`ǫ x̄1 P riK1, and 1

1`ǫ x̄2 P riK2. x̄ P conv
`
ripK1 ´ yq Y ripK2 ´ yq

˘
, and therefore

x P convpriK1 Y riK2q. l

Now we use the measurable selection theory to establish the non-emptiness of Bf .

Lemma 9.2. Let f P C, Bf ‰ H.

Proof. By the fact that f is continuous, we may write Bfpxq “ Xně1Fnpxq for all x P Rd,

with Fnpxq :“ tp P Rd : fpynq ´ fpxq ě p ¨ pyn ´ xqu where pynqně1 Ă Rd is some fixed dense
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sequence. All Fn are measurable by the continuity of px, pq ÞÝÑ fpynq ´ fpxq ´ p ¨ pyn ´ xq

together with Theorem 6.4 in [12]. Therefore the mapping x ÞÝÑ Bfpxq is measurable by

Lemma 7.1. Moreover, it is well known properties of the subgradient of finite convex functions

that this mapping is closed nonempty-valued. Then the result holds by Theorem 4.1 in [21]. l

We conclude this section with the following result which has been used in our proof of

Proposition 2.7. We believe that this is a standard convex analysis result, but we could not

find precise references. For this reason, we report the proof for completeness.

Theorem 9.3. Let fn, f : Rd Ñ R̄ be convex functions with int domf ‰ H. Then fn ÝÑ f

pointwise on RdzBdomf if and only if fn ÝÑ f pointwise on some dense subset A Ă RdzBdomf .

Proof. We prove the non-trivial implication "if". We first prove the convergence on int domf .

fn converges to f on a dense set. The reasoning will consist in proving that the fn are Lipschitz,

it will give a uniform convergence and then a pointwise convergence. First we consider K Ă

int domf compact convex with nonempty interior. We can find N P N and x1, ...xN P A X

pint domfzKq such that K Ă int convpx1, ..., xN q. We use the pointwise convergence on A

to get that for n large enough, fnpxq ď M for x P convpx1, ..., xN q, M ą 0 (take M “

max1ďkďN fpxkq ` 1). Then we will prove that fn is bounded from below on K. We consider

a P A X K and δ0 :“ supxPK |x ´ a|. For n large enough, fnpaq ě m for any a P A0 (take

for example m “ fpaq ´ 1). We write δ1 :“ minpx,yqPKˆBconvpx1,...,xNq |x ´ y|. Finally we

write δ2 :“ supx,yPconvpx1,...,xN q |x ´ y|. Now, for x P K, we consider the half line rx, aq,

it will cut Bconvpx1, ..., xN q in one only point y P Bconvpx1, ..., xN q. Then a P rx, ys, and

therefore a “ |a´y|
|x´y|x` |a´x|

|x´y|y. By the convex inequality, fnpaq ď |a´y|
|x´y|fnpxq ` |a´x|

|x´y|fnpyq. Then

fnpxq ě ´ |a´x|
|a´y|M ` |x´y|

|a´y|m ě ´ δ0

δ1
M ` δ2

δ1
m. Finally, if we write m0 :“ ´ δ0

δ1
M ` δ2

δ1
m,

M ě fn ě m0, on K.

This will prove that fn is M´m0

δ1
-Lipschitz. We consider x P K and a unit direction u P Sd´1

and f 1
n P Bfnpxq. For a unique λ ą 0, y :“ x ` λu P Bconvpx1, ..., xN q. As u is a unit

vector, λ “ |y ´ x| ě δ1. By the convex inequality, fnpyq ě fnpxq ` f 1
npxq ¨ py ´ xq. Then

M´m0 ě δ0|f 1
n¨u| and finally |f 1

n¨u| ď M´m0

δ1
as this bound does not depend on u, |f 1

n| ď M´m0

δ1

for any such subgradient. For n big enough the fn are uniformly Lipschitz on K, and so in f .

The convergence is uniform on K, it is then pointwise on K. As this is true for any such K,

the convergence is pointwise on int domf .

Now let us consider x P pcl domfqc. The set convpx, int domfqzdomf has a nonempty interior

because distpx,domfq ą 0 and int domf ‰ H. As A is dense, we can consider a P A X

convpx, int domfqzdomf . By definition of convpx, int domfq, we can find y P int domf such

that a “ λy ` p1 ´ λqx. λ ą 0 because a R domf . If λ “ 1, fnpxq “ fnpaq ÝÑ
nÑ8

8. Otherwise,

by the convexity inequality, fnpaq ď λfnpyq ` p1 ´ λqfnpxq. Then, as fnpaq ÝÑ
nÑ8

8, and

fnpyq ÝÑ
nÑ8

fpyq ă 8, we have fnpxq ÝÑ
nÑ8

8. l
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