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March 2017

Abstract A deterministic application θ : R2 → R2 deforms bijectively and
regularly the plane and allows to build a deformed random field X ◦θ : R2 → R
from a regular, stationary and isotropic random field X : R2 → R. The de-
formed field X ◦ θ is in general not isotropic, however we give an explicit char-
acterization of the deformations θ that preserve the isotropy. Further assuming
that X is Gaussian, we introduce a weak form of isotropy of the field X ◦ θ,
defined by an invariance property of the mean Euler characteristic of some of its
excursion sets. Deformed fields satisfying this property are proved to be strictly
isotropic. Besides, assuming that the mean Euler characteristic of excursions
sets of X ◦ θ over some basic domains is known, we are able to identify θ.

Deformed fields are a class of non-stationary and non-isotropic fields ob-
tained by deforming a fixed stationary and isotropic random field thanks to a
deterministic function that transforms bijectively the index set. Deformed fields
respond to the need to model spatial and physical phenomena that are in nu-
merous cases not stationary nor isotropic. To give but one example, they are
currently widely used in cosmology to model the cosmic microwave background
(CMB) deformed anisotropically by the gravitational lensing effect, with mass
reconstruction as an objective [14].

Our framework is two-dimensional: we set X : R2 → R the underlying
stationary and isotropic field, θ : R2 → R2 a bijective deterministic function and
Xθ = X ◦θ the deformed field. In fact, most studies on the deformed field model
deal with dimension two. The reason for this is that it is the simplest case of
multi-dimensionality, the results can be illustrated easily thanks to simulations
and it still covers a lot of possible applications, particularly in image analysis.
For instance, deformed fields are involved in the ”shape from texture” issue,
that is, the problem of recovering a 3-dimensional textured surface thanks to a
2-dimensional projection [8].

The model of deformed fields was introduced in 1992 in a spatial statistics
framework by Sampson and Guttorp in [18], with only a stationarity assump-
tion on X. It is also studied through the covariance function in [16] and in [17].
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In [5], the authors investigate the case of a linear deformation with a matrix
representation as the product of a diagonal and a rotation matrix, which pro-
duces what they call ”geometric anisotropy”. In [9], the deformed field model
is studied as a particular case of a model of deterministic deformation operator
applied to a stationary field X. A lot of papers also propose methods to esti-
mate θ, as we will see a little further on in this introduction, when we come to
our own contribution to the estimation matter.

Unless otherwise specified, the kind of stationarity and isotropy that we con-
sider consists in an invariance of the field’s law under translations or, respec-
tively, rotations. Even though the underlying field X is stationary and isotropic,
a lot of deformations transform the index space R2 in such a way that the sta-
tionarity and/or the isotropy are lost when it comes to the deformed field. The
deformations preserving stationarity are the linear deformations. Concerning
isotropy, a natural question arises: which are the deformations θ that preserve
isotropy, for any underlying field X ? It is solved in Section 2. We give an ex-
plicit form for this kind of deformations and we call them spiral deformations.
Let us point out here that the question of preserving the isotropy for one fixed
underlying field X is different, and it is solved in Section 4.

For the rest of the paper, we have in mind the following practical problem:
the covariance function of the underlying field X and the deformation θ are
unknown. We try to study and even to identify θ through observations of some
excursion sets of Xθ above fixed levels. For this, we add some assumptions
on X (Gaussianity, C2-regularity, non-degeneracy assumptions) and on θ (C2-
regularity), which are precisely described and justified in Section 1, and we focus
on the mean Euler characteristic of the excursion sets. The Euler characteristic
is an additive topological functional that is defined on a large class of compact
sets. Heuristically, the Euler characteristic of a set is determined by its topology:
for a two-dimensional compact set, it is the number of connected components
minus the number of holes in this set; for a one-dimensional set, it is simply the
number of closed intervals that compose the set. Note that a modified version of
the Euler characteristic of excursion sets will be more adequate to address our
problem. The formulas of the expectation of the (modified) Euler characteristic
of an excursion set of Xθ can be found in Section 3.

More precisely, let T be a compact regular set in R2. We are interested in
the Euler characteristic χ of the excursion set of Xθ restricted to T above a
level u ∈ R, Au(Xθ, T ) = {t ∈ T / X(θ(t)) ≥ u}. However, we may study
equivalently the stationary and isotropic field X on the transformed set θ(T ) or
the deformed field Xθ on the set T , since

χ(Au(Xθ, T )) = χ(Au(X, θ(T ))).

The sets T that we consider are basic domains: segments and rectangles in R2.
In Section 4, we introduce the notion of χ-isotropic deformation: it ap-

plies to a deformation θ such that, for any level u and for any rectangle T ,
E[χ(Au(Xθ, T ))] does not vary under any rotation of T . This is in particular
true if the deformed field is isotropic, hence this property can be viewed as a
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weak notion of isotropy. However, it occurs that this weak notion implies the
strong one (isotropy in law), that is, the χ-isotropic deformations are exactly
the spiral deformations.

In Section 5, we tackle the problem of identifying θ, assuming that we only
have at our disposal the mean Euler characteristic of some excursion sets of the
deformed field. The problem of the estimation of a deformation θ thanks to
the observation of the deformed random field Xθ is originally a spatial statistics
problem and it has been studied under different angles since it was introduced.
At first, [18] used several observations on a sparse grid to estimate θ. Another
approach is to use only one observation of the deformed field on a dense grid;
it is adopted in [13], [9], [4], [2], and [12] with an underlying field that is sta-
tionary and/or isotropic. These different papers involve convergence results on
quadratic variations and quasi-conformal theory. The study in [3] applies in
particular to deformed fields of the form {X(x + ∇η(x)), x ∈ R2}, for which
an estimation of the deterministic η : R2 → R is proposed; this very model is
indeed used in cosmology for the estimation of the gravitational lensing of the
CMB [14].

Our approach differs from the previous ones, since our observations are lim-
ited to realizations of Xθ over a fixed level, and not to the whole realizations.
Our method is closer to the one in [7], where the inference of the deformation
is based on the size and shape of the deformed field’s level curves; however, the
author restricts the deformations to linear ones given by symmetric, positive
and definite matrices. With our sparse observations, we manage as well as in
[4] to compute the complex dilatation of θ up to a conformal map, at every
point of the domain. The complex dilatation provides a characterization of the
deformation.

In this paper, we prove four main results. Theorem 2.5 states that the de-
formations preserving isotropy are exactly the spiral deformations. In Theorem
4.4, the class of deformations satisfying the invariance condition of the mean
Euler characteristic of excursion sets is identified with the spiral deformations.
A consequence of this theorem is Corollary 4.7. Roughly speaking, it states that
three notions of preservation of isotropy coincide and correspond to the set of
spiral deformations. In Section 5, we show how to almost entirely identify θ
through the mean Euler characteristic of its excursion sets over basic domains.
The general case is described by Method 5.2. To end with, in Section 5.2, lim-
iting ourselves to spiral deformations, we finally propose an estimation method
based on one single observation of the deformed field.

1 Notations and assumptions

For any compact A in R2, we write dim(A) its Hausdorff dimension; if dim(A) =
1, we write |A|1 its one-dimensional Hausdorff measure; if dim(A) = 2, we write
|A|2 its two-dimensional Hausdorff measure and ∂A its frontier.

We work in a fixed orthonormal basis in R2 and we will use the same notation
for a linear application defined on R2 and taking value in R2 and for its matrix
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in this basis. We denote by O(2) (respectively SO(2)) the group of orthogonal
transformations in R2 (respectively the group of rotations in R2), by T the
one-dimensional torus and for any α ∈ T, by ρα the rotation of angle α.

For any real s, we write [0, s] = {x ∈ R, 0 ≤ x ≤ s} if s ≥ 0 and [0, s] =
{x ∈ R, s ≤ x ≤ 0} if s < 0. We say a set of points T in R2 is a segment if there
exists (a, b) ∈ (R2)2 with a 6= b such that T = {a+ t(b− a), t ∈ [0, 1]}. For any
(s, t) ∈ R2, we write T (s, t) = [0, s] × [0, t] and we say a set of points T in R2

is a rectangle if there exist (s, t) ∈ R2, ρ ∈ SO(2) and a translation τ such that
T = ρ ◦ τ(T (s, t)).

If f = (f1, f2) : R2 → R2, with fi : R2 → R for i ∈ {1, 2}, is a differ-
entiable function, for any x = (s, t) ∈ R2, we use the notations J1

f (x) for the

vector ∂sf(x) = (∂sf1(x), ∂sf2(x)), J2
f (x) for the vector ∂tf(x) and Jf (x) for

the Jacobian matrix of f at point x. More generally, if M is a 2× 2 matrix, for
i ∈ {1, 2}, we write M i the ith column of M .

Let X be a Gaussian, stationary and isotropic random field, defined on R2

and taking real values; we write C : R2 → R its covariance function. Since X
is stationary, we may assume it is centered. We shall also assume that C(0) = 1
since if not, we consider the field 1√

C(0)
X instead of X. As for the regularity

of X, we make the assumption that almost every realization of X is of class C2

on R2. As a consequence, C is of class C4. We denote by X ′(t) (respectively
by X ′′(t)) the gradient vector (respectively the Hessian matrix) of X at point
t and by C ′′(t) the Hessian matrix of C at point t. We assume that for any
t ∈ R2, the joint distribution of (X ′i(t), X

′′
i,j(t))(i,j)∈{1,2}2,i≤j is not degenerate,

in order to be able to apply the mean Euler characteristic of excursion sets
formula. Therefore, the covariance matrix of X ′(0) is not degenerate; since X
is isotropic, there exists λ > 0 such that Cov(X ′(0)) = λ I2. If λ 6= 1, Xθ is

nevertheless equal to X̃θ̃, with θ̃ =
√
λθ and with X̃(·) = X(

√
λ
−1
·) satisfying

Cov(X̃ ′(0)) = I2. Consequently, without loss of generality, we shall assume that
C ′′(0) = −I2.

We gather all the assumptions on X that will be in force in Sections 3, 4
and 5 under the name (H):

X is Gaussian,

X is stationary and isotropic,

X is almost surely of class C2,

∀t ∈ R2, the joint distribution of (X ′i(t), X
′′
i,j(t))(i,j)∈{1,2}2

i≤j
is not degenerate,

X is centered, C(0) = 1 and C ′′(0) = −I2.

Our ambition in Section 5 is to identify the deformation θ assuming that
we only have at our disposal the expectation of χ(Au(Xθ, T )) for different sets
T and for a fixed level u. However, it is not possible to distinguish between
θ and another deformation θ̃ such that the random fields Xθ and Xθ̃ have the

same law, which defines an equivalence relation between θ and θ̃. Because of the
stationarity and the isotropy of X, the equivalence class of θ is {θ̃ = ρ◦θ+u, ρ ∈
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O(2), u ∈ R2} and we can only hope to determine one of its representative and
not θ itself.

Consequently, without loss of generality, we can make the assumption that
θ(0) = 0. If θ is differentiable, we shall also assume that for any x ∈ R2,
det(Jθ(x)) is positive or, in other words, that θ preserves orientation. Indeed,
function x 7→ det(Jθ(x)) is continuous on R2 and does not take zero value,
hence it takes either only positive or only negative values. If for all x ∈ R2,
det(Jθ(x)) < 0, we can replace θ by σ ◦ θ, where σ ∈ O(2) is the symmetry with
respect to the axis of abscissa; then for any x ∈ R2, Jσ◦θ(x) = σ ◦ Jθ(x) and so
the Jacobian determinant of σ ◦ θ is positive on R2. Those two transformations
on θ (translation along vector θ(0) and left composition with σ) only mean that
we consider another representative in the equivalence class of θ. Note that the
class of linear as well as tensorial deformations considered as examples in Section
5 are stable under those transformations made in order to simplify our study.

We define D0(R2) the set of continuous and bijective functions from R2 to
R2 with a continuous inverse, taking value 0 at 0. We define D2(R2) the set of
C2-diffeomorphisms from R2 to R2 taking value 0 at 0. We call such functions
(in D0(R2) or in D2(R2), according to the section of this paper) deformations.

Note that the assumptions on X and on θ that we have just listed are not all
in force in Section 2, where we soften the regularity assumptions on X and θ and
we replace the Gaussian hypothesis on X by the assumption of the existence of
a second moment.

2 For which θ is Xθ isotropic?

In this section, assumption (H) is not in force. We only assume that X is
stationary, isotropic and that it admits a second moment. We denote by Cθ the
covariance function of the deformed field Xθ. Because the field X is stationary,
for any (x, y) ∈ (R2)2,

Cθ(x, y) = Cov(Xθ(x), Xθ(y)) = C(θ(x)− θ(y)). (1)

In the following, we exhibit the deformations θ that leave the field Xθ

isotropic, for any stationary and isotropic field X. Note that the underlying
field X is not fixed. Our approach is analogous to the one in [17], where the
objective is, starting with a random field Y with a known covariance function,
to find a deformation θ such that Y = X ◦ θ, with X : R2 → R a stationary, or
stationary and isotropic random field.

We begin with a short introduction of notations relative to polar represen-
tation. We write T = R/2πZ the one-dimensional torus and we denote by S
the transformation of polar coordinates to cartesian coordinates in the plane
deprived of the origin:

S : (0,+∞)× T→ R2\{0} (r, ϕ) 7→ (r cosϕ, r sinϕ).

We define D0 ((0,+∞)× T) the set of continuous and bijective functions θ̂ :
(0,+∞)×T→ (0,+∞)×T with continuous inverses. For any deformation θ ∈
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D0
(
R2
)
, we write θ0 = θ|R2\{0}, we define the deformation θ̂ ∈ D0 ((0,+∞)× T)

by θ̂ = S−1 ◦ θ0 ◦ S and we denote by θ̂1 and θ̂2 its coordinate functions.

Proposition 2.1 The application D0
(
R2
)
→ D0 ((0,+∞)× T) θ 7→ θ̂ is in-

jective and it is a group morphism, that is to say if η and θ are in the set D0
(
R2
)

then η̂ ◦ θ = η̂ ◦ θ̂. Moreover, the coordinate functions of the composition η̂ ◦ θ
are

η̂ ◦ θ
1

= η̂1 ◦ θ̂ and η̂ ◦ θ
2

= η̂2 ◦ θ̂.

Proof. The above application is obviously injective and if η and θ belong to
D0
(
R2
)
, then

(η ◦ θ)0 = η0 ◦ θ0 = (S ◦ η̂ ◦ S−1) ◦ (S ◦ θ̂ ◦ S−1) = S ◦ η̂ ◦ θ̂ ◦ S−1,

hence we get the homomorphism property. Consequently, for i ∈ {1, 2}, the

coordinate function η̂ ◦ θ
i

satisfies

(η̂ ◦ θ
1
, η̂ ◦ θ

2
) = η̂ ◦ θ = η̂ ◦ θ̂ = (η̂1 ◦ θ̂, η̂2 ◦ θ̂).

2

Definition 2.2 A deformation θ ∈ D0(R2) is a spiral deformation if there exist
f : (0,+∞)→ (0,+∞) strictly increasing and surjective, g : (0,+∞)→ T and
ε ∈ {±1} such that θ satisfies

∀(r, ϕ) ∈ (0,+∞)× T, θ̂(r, ϕ) = (f(r), g(r) + εϕ). (2)

Remarks 2.3 Note that the set of spiral deformations forms a group for the
operation of composition. The choice of f strictly increasing is due to the con-
ditions of continuity and inversibility on θ and to the fact that θ(0) = 0. The

2π-periodicity of θ̂2 entails that coefficient ε in the angular part of (2) is a pos-
itive integer and the inversibility of θ implies that ε belongs to {±1}. If we only
consider deformations with positive Jacobian determinants, in accordance with
our explanations in Section 1, then we can set ε = 1. Indeed, the positivity of
the Jacobian determinant of θ is equivalent to the positivity of the one of θ̂ (see
Formula (15) in the following by way of justification).

Example 2.4 Linear spiral deformations. A linear spiral deformation is a de-
formation with polar representation either (r, ϕ) 7→ (λr, ϕ + α) or (r, ϕ) 7→
(λr,−ϕ + α), with λ 6= 0 and α ∈ T, that is to say it is of the form λρ, with
ρ ∈ O(2).

In [7], the deformations are restricted to the ones given by symmetric, pos-
itive and definite matrices. In that case, the field Xθ is isotropic if and only if
the two positive eigenvalues of θ are equal. In the following theorem, we also
determine the deformations preserving isotropy but in the general case.
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Theorem 2.5 The deformations in D0(R2) such that for any stationary and
isotropic field X, Xθ is isotropic are the spiral deformations.

Proof. To prove the direct implication, let us assume that a deformation θ is
a spiral deformation with polar representation (2) and let α ∈ T.

∀(r, ϕ) ∈ (0,+∞)× T, θ̂ ◦ ρ̂α = (f(r), g(r) + ε(ϕ+ α))

= (f(r), g(r) + εϕ+ εα)

= ρ̂εα ◦ θ̂.

Therefore, θ satisfies the following property:

∀ρ ∈ SO(2), ∃ρ′ ∈ SO(2) / θ ◦ ρ = ρ′ ◦ θ.

This entails that Xθ ◦ ρ = X ◦ ρ′ ◦ θ. The isotropy of X implies that X ◦ ρ′ has
the same law as X. Consequently, Xθ ◦ ρ has the same law as Xθ. Thus the
isotropy of Xθ is proved.

We now turn to the converse implication. Let us assume that for any sta-
tionary and isotropic field X, the field Xθ is isotropic. Hence its covariance
function, given by (1) is invariant under the action of any rotation:

∀ρ ∈ SO(2), ∀(x, y) ∈ (R2)2, Cθ(ρ(x), ρ(y)) = Cθ(x, y).

In particular, if we use the Gaussian covariance function C(x) = exp(−‖x‖2),
we obtain

∀ρ ∈ SO(2), ∀(x, y) ∈ (R2)2, ‖θ(ρ(x))− θ(ρ(y))‖ = ‖θ(x)− θ(y)‖. (3)

Taking y = 0, we deduce from (3) that θ̂1 is radial. We set for any ϕ ∈ T and

for any r > 0, θ̂1(r, ϕ) = f(r). Since θ is bijective, continuous and θ(0) = 0, f is
necessarily strictly increasing with limr→0 f(r) = 0 and limr→+∞ f(r) = +∞.

To infer the form of θ̂2, we fix r > 0 and, for any ϕ ∈ T, we use the complex
representation to write Formula (3) for x = reiϕ, y = r and for any angle α of
the rotation ρ. Dividing the equality by f(r), we get

|eiθ̂2(r,ϕ+α) − eiθ̂2(r,α)| = |eiθ̂2(r,ϕ) − eiθ̂2(r,0)|,

hence
|1− ei(θ̂2(r,ϕ+α)−θ̂2(r,α))| = |1− ei(θ̂2(r,ϕ)−θ̂2(r,0))|.

Since 1 as well as each exponential term belongs to {z ∈ C / |z| = 1}, a geometric
interpretation of the above equality entails that for any ϕ ∈ T, there exists
ε(r, ϕ, α) ∈ {±1} such that

θ̂2(r, ϕ+ α)− θ̂2(r, α) = ε(r, ϕ, α) (θ̂2(r, ϕ)− θ̂2(r, 0)). (4)

Assuming that there exists ϕ 6= 0 such that θ̂2(r, ϕ) − θ̂2(r, 0) = 0, we deduce

from (4) that θ̂2(r, ·) is constant on T, which contradicts the bijectivity of θ.
Consequently, for any ϕ 6= 0,

ε(r, ϕ, α) =
θ̂2(r, ϕ+ α)− θ̂2(r, α)

θ̂2(r, ϕ)− θ̂2(r, 0)
.
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This implies that ε is continuous from (0,+∞) × T\{0} × T onto {±1}. A
connexity argument applies and implies that ε is constant. We write ε(r, ϕ, α) =
ε ∈ {±1}.

We fix r > 0. For any (ϕ, α) ∈ T2, we can rewrite (4)

θ̂2(r, ϕ+ α) = θ̂2(r, α) + ε(θ̂2(r, ϕ)− θ̂2(r, 0)).

By differentiating the above equality with respect to α, for a fixed ϕ ∈ T, we
deduce that ∂ϕθ̂2(r, ·) is constant on T. Therefore, there exists k(r) ∈ {±1} and
g(r) ∈ T such that

∀r > 0, ∀ϕ ∈ T, θ̂2(r, ϕ) = k(r)ϕ+ g(r).

Note that the reason why k(r) must belong to {±1} has already been explained

in Remarks 2.3. Finally, since θ̂2 is continuous, k(r) is necessarily constant,
which concludes the proof of Theorem 2.5.

Remark 2.6 Considering the proof of Theorem 2.1, we could state another the-
orem: the deformations in D0(R2) such that, if X is a stationary and isotropic
field with covariance function C(x) = exp(−‖x‖2), Xθ is isotropic, are the spiral
deformations. In fact, it would be true for any stationary and isotropic field X
with an injective covariance function.

3 Euler expectation of an excursion set

The Euler characteristic is defined on a large subset of compact sets, the class
of basic complexes. There are several ways to define this topological functional
(see for instance [15] and [1]). However, we are actually only interested in the
Euler characteristic of excursion sets, which can be computed thanks to specific
formulas. From now on, X is a random field assumed to satisfy (H) and θ
is a deformation in D2(R2). Consequently, even though Xθ is in general not
stationary nor isotropic, it is Gaussian and its realizations are almost surely of
class C2. Moreover, if T is a rectangle or a segment in R2 then the set θ(T ) and
its frontier δθ(T ) = θ(δT ) are compact and piece-wise C2 manifolds in R2, of
respective dimensions two and one.

We start by introducing the general formula for the Euler characteristic of an
excursion set of Xθ, above a d-dimensional rectangle T and then we show how
it adapts to dimensions d = 1 and d = 2. Let us first explain why we may study
equivalently the stationary and isotropic field X on the transformed set θ(T ) or
the non-stationary and anisotropic fieldXθ on the set T . The deformation θ is an
homeomorphism and it satisfies Au(Xθ, T ) = θ−1(Au(X, θ(T ))), therefore the
sets Au(Xθ, T ) and Au(X, θ(T )) are homotopic. Since the Euler characteristic
is a homotopy invariant (see [15] Theorem 13.36), the above relation leads to

χ(Au(Xθ, T )) = χ(Au(X, θ(T ))).
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Consequently, we can focus on E[χ(Au(X, θ(T )))] that can be computed
thanks to [1] Theorem 12.4.2. We write (Hi)i∈N the Hermite polynomials and,
for any real x, H−1(x) =

√
2πΨ(x) exp(x2/2), where Ψ is the tail probability of

a standard Gaussian variable.

E[χ(Au(Xθ, T ))] = E[χ(Au(X, θ(T )))] =
∑

0≤i≤d

Li(θ(T )) ρi(u), (5)

with ∀ 0 ≤ i ≤ d, ρi(u) = (2π)−(i+1)/2Hi−1(u)e−u
2/2

and with Li(θ(T )) the ith Lipschitz-Killing curvature of θ(T ). Thanks to the
isotropy assumption on X and to the hypothesis C ′′(0) = −I2, the Lipschitz-
Killing curvatures have a very simple expression (see [1] section 12.5: “Isotropic
Fields over Smooth Domains”):

if d = 1, L1(θ(T )) = |θ(T )|1, L0(θ(T )) = χ(θ(T )) = 1,

if d = 2, L2(θ(T )) = |θ(T )|2, L1(θ(T )) =
1

2
|∂θ(T )|1, L0(θ(T )) = χ(θ(T )) = 1.

Thus, for any two-dimensional rectangle T ⊂ R2, from Formula (5), we get

E[χ(Au(X, θ(T )))] = e−u
2/2

(
u
|θ(T )|2
(2π)3/2

+
|∂θ(T )|1

4π

)
+ Ψ(u), (6)

If T is a segment in R2 then θ(T ) is a one-dimensional manifold and we apply
Formula (5) with d = 1:

E[χ(Au(X, θ(T )))] = e−u
2/2 |θ(T )|1

2π
+ Ψ(u). (7)

For our approach in Section 5, where we want to identify θ by considering some
well-chosen excursion sets of Xθ, it will be easier to limit ourselves to the term
of highest index in (5), called the modified Euler characteristic, and also used
in [11] and [10]. That is why in the following, our results will also involve the
modified Euler characteristic (denoted by φ) of excursion sets. The general
formula for the expectation of the modified Euler characteristic of an excursion
set is

E[φ(Au(X, θ(T )))] = Ld(θ(T )) ρd(u),

from which we deduce, if d = 2,

E[φ(Au(X, θ(T )))] = e−u
2/2u

|θ(T )|2
(2π)3/2

, (8)

and if d = 1,

E[φ(Au(X, θ(T )))] = e−u
2/2 |θ(T )|1

2π
. (9)
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Remark 3.1 (Additivity property) The Euler characteristic is an additive
functional, which implies that if T and T ′ are two regular compact sets in R2

such that T ∩ T ′ = ∅ then

E[χ(Au(Xθ, T ∪ T ′))] = E[χ(Au(Xθ, T ))] + E[χ(Au(Xθ, T
′))].

In fact, φ satisfies the same property because the modified Euler characteristic,
as well as the Euler characteristic of an excursion set may be expressed as the
alternate sum of numbers of critical points of different types of X in the con-
sidered domain (see [1] Corollary 9.3.5; the term of highest index in the sum
corresponds to the modified Euler characteristic of the excursion set). Even if
the two-dimensional sets T and T ′ have a non-empty but one-dimensional inter-
section, the additivity property is still satisfied. Indeed, in this case, according
to Bulinskaya lemma ([1] Lemma 11.2.10), almost surely, X admits no crit-
ical points in T ∩ T ′; consequently, the (modified) Euler characteristic of the
excursion set of X over T ∩ T ′ is almost surely 0.

We now state a continuity result on the mean Euler characteristic of excur-
sion sets. The proposition hereafter shows that if T is a segment in R2, the
mean Euler characteristic of the excursion set of Xθ above T may be seen as the
limit of the mean Euler characteristic of excursion sets of Xθ over a sequence of
two-dimensional sets, decreasing in the sense of set inclusion and approaching
T .

Proposition 3.2 Let T be a segment in R2. Let u be a unit vector orthogonal to
T and, for any ρ > 0, let Tρ be the rectangle {t+δu, t ∈ T, −ρ ≤ δ ≤ ρ}. Then,
for any random field X satisfying Assumption (H), as ρ decreases towards 0,

E[χ(Au(Xθ, Tρ))] −→
ρ→0

E[χ(Au(Xθ, T ))]

Proof. The set θ(T ) is one-dimensional while for any ρ > 0, θ(Tρ) is two-
dimensional. Therefore, according to (7) and to (6),

E[χ(Au(X, θ(T ))] = e−u
2/2 |θ(T )|1

2π
+ Ψ(u),

∀ρ > 0, E[χ(Au(X, θ(T ρ)))] = e−u
2/2

(
u
|θ(T ρ)|2
(2π)3/2

+
|∂θ(T ρ)|1

4π

)
+ Ψ(u).

For any sequence (ρn)n∈N of positive terms decreasing towards 0, the se-
quence of sets (θ(Tρn))n∈N, decreases to ∩n∈Nθ(Tρn) = θ(T ) thus the limit of
|θ(Tρn)|2 as n tends to infinity is zero.

For any ρ > 0, the frontier of θ(Tρ) is

∂θ(Tρ) = θ(∂Tρ) = {θ(t+ ρu), t ∈ T} ∪ {θ(t− ρu), t ∈ T}.

As ρ tends to 0, the one-dimensional measure of each set of this disjoint union
tends to |θ(T )|1; therefore, |∂θ(Tρ)|1 tends to 2|θ(T )|1. This concludes the proof.
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Remarks 3.3 Proposition 3.2 could be adapted in various ways. First, we could
generalize it to a one-dimensional compact and connected set T satisfying certain
regularity assumptions. Besides, the sequence of sets {Tρ, ρ > 0} approaching
T could be defined differently, for instance as the sequence of ρ-tubes around T ,
that is,

∀ρ > 0, Tρ = {z ∈ R2 / dist(T, z) ≤ ρ}, where dist(T, z) = min
x∈T
{‖x− z‖}.

We should also point out that Proposition 3.2 is specific to the Euler character-
istic and the same result would not stand with the modified Euler characteristic.
Indeed, consider for instance TN = [a, b] × [−N−1, N−1] for N ∈ N\{0}, then
Formula (8) yields

E[φ(Au(X, θ(TN )))] −→
N→0

0,

whereas, according to Proposition 3.2,

E[χ(Au(X, θ(TN )))] −→
N→0

exp(−u2/2)
|θ([a, b]× {0})|1

2π
+ Ψ(u).

To end with, here is an integral formula giving the second moment of the mod-
ified Euler characteristic of an excursion set of X over θ(T ), where T is a rect-
angle. It will be useful in Section 5.2 when we address estimation matters. It is
proved in [10] Proposition 1 for an excursion set over a cube, however it remains
true in our case.

Var[φ(Au(Xθ, T )] = Var[φ(Au(X, θ(T ))]

=

∫
R2

|θ(T ) ∩ (θ(T )− t)|2(G(u, t)D(t)1/2 − h(u)2) dt

+ |θ(T )|2(2π)−1g(u),

(10)

where

G(u, t) = E[1[u,+∞)(X(0))1[u,+∞)(X(t)) det(X ′′(0)) det(X ′′(t))|X ′(0) = X ′(t) = 0],

D(t) = (2π)4 det(I2 − C ′′(t)2),

g(u) = E[1[u,+∞)(X(0))|det(X ′′(0))|)],

h(u) = (2π)−3/2 u e−u
2/2.

4 Notion of χ-isotropic deformation

In this section, the underlying field X is fixed and it satisfies Assumption (H).
We define χ-isotropic deformations, characterized by an invariance condition of
the mean Euler characteristic of some excursion sets of the associated deformed
field. We show that the only deformations that satisfy this invariance property
are the spiral deformations, that is to say the ones that were proved to preserve
isotropy in Section 2.
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Definition 4.1 (χ-isotropic deformation) A deformation θ ∈ D2(R2) is χ-
isotropic if for any rectangle T in R2, for any u ∈ R and for any ρ ∈ SO(2),

E[χ(Au(Xθ, ρ(T ))] = E[χ(Au(Xθ, T )]. (11)

Remark 4.2 If we consider the modified Euler characteristic instead of the
Euler characteristic, we can easily adapt Definition 4.1 in the following way: a
deformation θ ∈ D2(R2) is χ-isotropic if for any rectangle or segment T in R2,
for any u ∈ R and for any ρ ∈ SO(2),

E[φ(Au(Xθ, ρ(T ))] = E[φ(Au(Xθ, T )].

Example 4.3 Spiral deformations defined in Section 2 are χ-isotropic defor-
mations. Indeed, if a deformation θ is such that Xθ is isotropic then it satisfies
the above definition, because for any ρ ∈ SO(2), Xθ◦ρ has the same law as
Xθ. But according to Theorem 2.5, the deformations that preserve isotropy are
exactly the spiral deformations.

Here comes the main result of Section 4.

Theorem 4.4 The χ-isotropic deformations are exactly the spiral deformations
in D2(R2).

Before turning to the proof of Theorem 4.4, note that it shows that
χ-isotropy is independent on the underlying field X, even though the χ-isotropy
definition (Definition 4.1) is stated with a fixed one.

Proof of Theorem 4.4. Spiral deformations are χ-isotropic deformations ac-
cording to Example 4.3; we prove that they are the only χ-isotropic deformations
thanks to two lemmas and one result from [6]. The first lemma gives a char-
acterization of χ-isotropic deformations involving invariance properties of the
Jacobian matrix under rotations.

Lemma 4.5 A deformation θ ∈ D2(R2) is χ-isotropic if and only if for any
ρ ∈ SO(2), for any x ∈ R2,{

(i) ∀i ∈ {1, 2}, ‖J iθ◦ρ(x)‖ = ‖J iθ(x)‖,
(ii) det(Jθ◦ρ(x)) = det(Jθ(x)).

(12)

Proof Let θ ∈ D2(R2) be a χ-isotropic deformation and let ρ ∈ SO(2). We
fix (s, t) ∈ R2 and u ∈ R\{0}. Identity (11) is satisfied for rectangle T =
T (s, t), thus Formula (6) applied at two different levels u and u′ implies that
|θ ◦ ρ(T (s, t))|2 = |θ(T (s, t))|2, whence∫

[0,s]

∫
[0,t]

|det(Jθ◦ρ(x, y))| dx dy =

∫
[0,s]

∫
[0,t]

|det(Jθ(x, y)| dx dy.

Differentiating twice the above equality with respect to s and to t yields
for any (s, t) ∈ R2, |det(Jθ◦ρ(s, t))| = |det(Jθ(s, t))|, but |det(Jθ◦ρ(s, t))| =
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|det(Jθ(ρ(s, t)))| and the Jacobian determinant of θ has a fixed sign on R2,
hence (12) Condition (ii) is satisfied. Now let us prove Condition (i), for i = 1
for instance. For any n ∈ N\{0}, according to the definition of χ-isotropy,

E[χ(Au(Xθ, [0, s]×[t−n−1, t+n−1))] = E[χ(Au(Xθ, ρ([0, s]×[t−n−1, t+n−1])))].

Then we apply Proposition 3.2 to the set [0, s] × {t}, intersection of the sets
{[0, s]× [t− n−1, t+ n−1], n ∈ N} (respectively to the set ρ([0, s]× {t}), inter-
section of the sets {ρ([0, s]× [t− n−1, t+ n−1]), n ∈ N}). This yields

E[χ(Au(Xθ, [0, s]× {t}))] = E[χ(Au(Xθ, ρ([0, s]× {t})))],

and, from Formula (7),

|θ ◦ ρ([0, s]× {t})|1 = |θ([0, s]× {t})|1,

which can be written∫
[0,s]

‖J1
θ◦ρ(x, t)‖ dx =

∫
[0,s]

‖J1
θ (x, t)‖ dx.

Differentiating this integral equality with respect to s, we obtain ‖J1
θ◦ρ(s, t)‖ =

‖J1
θ (s, t)‖. Similarly, we get ‖J2

θ◦ρ(s, t)‖ = ‖J2
θ (s, t)‖. Hence we have proved

the direct implication of Lemma 4.5 and we turn to the converse implication.
Let T be a rectangle in R2. In the first place, there exist (s, t) ∈ R2,

ρ0 ∈ SO(2) and a translation by vector (a, b) ∈ R2, denoted by τa,b, such
that T = ρ0 ◦ τa,b(T (s, t)). Let θ ∈ D2(R2) satisfying (12) for any ρ ∈ SO(2)
and for any x ∈ R2. Therefore

|θ ◦ ρ(T )|2 = |θ ◦ ρ ◦ ρ0(τa,b(T (s, t)))|2

=

∫
[0,s]

∫
[0,t]

|det(Jθ◦ρ◦ρ0(a+ x, b+ y)| dx dy

=

∫
[0,s]

∫
[0,t]

|det(Jθ◦ρ0(a+ x, b+ y)| dx dy

= |θ(T )|2.

The third equality results from (12) Condition (i). Now, we express the perime-
ter length of θ ◦ ρ(T ).

|∂θ ◦ ρ(T )|1 =|∂θ ◦ ρ ◦ ρ0(τa,b(T ))|1

=

∫
[0,s]

‖J1
θ◦ρ◦ρ0(a+ x, b)‖ dx+

∫
[0,s]

‖J1
θ◦ρ◦ρ0(a+ x, b+ t)‖ dx

+

∫
[0,t]

‖J2
θ◦ρ◦ρ0(a, b+ y)‖ dy +

∫
[0,t]

‖J2
θ◦ρ◦ρ0(a+ s, b+ y)‖ dy

=

∫
[0,s]

‖J1
θ◦ρ0(a+ x, b)‖ dx+

∫
[0,s]

‖J1
θ◦ρ0(a+ x, b+ t)‖ dx

+

∫
[0,t]

‖J2
θ◦ρ0(a, b+ y)‖ dy +

∫
[0,t]

‖J2
θ◦ρ0(a+ s, b+ y)‖ dy

=|∂θ(T )|1.
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The third equality results from (12) Condition (ii). Thanks to Formula (6),
this proves that E[χ(Au(X, θ ◦ ρ(T )))] = E[χ(Au(X, θ(T )))]. Hence θ is a
χ-isotropic deformation and the proof of Lemma 4.5 is completed. 2

If M and N are two square matrices of size 2× 2, the conditions ‖M i‖ = ‖N i‖
for i ∈ {1, 2} and det(M) = det(N) are equivalent to the existence of a
rotation matrix ρ ∈ SO(2) such that M = ρN . Consequently, we introduce the
following equivalence relation on the space of invertible matrices of size 2× 2:

M
SO(2)∼ N ⇔ ∃ρ ∈ SO(2) / M = ρN.

With this new notation, we can reformulate Lemma 4.5 in the following way: a
deformation θ ∈ D2(R2) is χ-isotropic if and only if

∀x ∈ R2, ∀ρ ∈ SO(2), Jθ◦ρ(x)
SO(2)∼ Jθ(x). (13)

Now we are able to state a second lemma that gives another characterization of
χ-isotropic deformations involving the polar representation.

Lemma 4.6 A deformation θ ∈ D2(R2) is a χ-isotropic deformation if and
only if functions

(r, ϕ) 7→ (∂r θ̂1(r, ϕ))2 + (θ̂1(r, ϕ) ∂r θ̂2(r, ϕ))2

(r, ϕ) 7→ (∂ϕθ̂1(r, ϕ))2 + (θ̂1(r, ϕ) ∂ϕθ̂2(r, ϕ))2

(r, ϕ) 7→ θ̂1(r, ϕ) det(Jθ̂(r, ϕ))

(14)

are radial, i.e. if they do not depend on ϕ.

Proof We use the notations introduced at the beginning of Section 2. The
Jacobian matrix of S at point (r, ϕ) ∈ (0,+∞)× T is

JS(r, ϕ) = ρϕ

(
1 0
0 r

)
.

Consequently,

JS−1(S(r, ϕ)) = (JS(r, ϕ))
−1

=

(
1 0
0 r−1

)
ρ−ϕ.

Now for any rotation ρ ∈ SO(2) and for any (r, ϕ) ∈ (0,+∞) × T, we want to
express J(θ◦ρ)0(S(r, ϕ)) = Jθ0◦ρ0(S(r, ϕ)) thanks to J

θ̂◦ρ(r, ϕ).

Since θ0 = S ◦ θ̂ ◦ S−1, we get

Jθ0(S(r, ϕ)) = ρθ̂2(r,ϕ)

(
1 0

0 θ̂1(r, ϕ)

)
Jθ̂(r, ϕ)

(
1 0
0 r−1

)
ρ−ϕ. (15)

We use the characterization of χ-isotropy given by (13). A deformation θ ∈
D2(R2) is a χ-isotropic deformation if and only if for any (r, ϕ, α) ∈ (0,+∞)×T2,
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Jθ0◦ρα(S(r, ϕ)) = Jθ0(S(r, ϕ+α)) ρα is equivalent to Jθ0(S(r, ϕ)). Equivalently,
for any (r, ϕ, α) ∈ (0,+∞)× T2, the equivalence relation(

1 0

0 θ̂1(r, ϕ+ α)

)
Jθ̂(r, ϕ+ α)

SO(2)∼
(

1 0

0 θ̂1(r, ϕ)

)
Jθ̂(r, ϕ)

holds and the above matrices have the same determinant in absolute value and
the same norm of columns, which means that functions defined by (14) do not
depend on their second variable.

2

To conclude the proof of Theorem 4.4, we refer to [6] that uses partial
differential equations techniques to prove that deformations satisfying (14) are
spiral deformations. 2

Let us write S the set of spiral deformations in D2(R2), X the set of χ-
isotropic deformations, I the set of deformations θ in D2(R2) such that for
any isotropic and stationary field X satisfying (H), Xθ is isotropic and, finally,
for a fixed stationary and isotropic field X satisfying (H), I(X) the set of
deformations θ in D2(R2) such that Xθ is isotropic. These sets satisfy the
following chain of inclusions or equalities:

S = I ⊂ I(X) ⊂ X = S.

The first and the last equalities come respectively from Theorem 2.1 and The-
orem 4.4; the first inclusion is obvious and the second one is a consequence of
Example 4.3. As a result, the following corollary holds.

Corollary 4.7 Let X be a stationary and isotropic random field satisfying As-
sumption (H). Then S = I(X) = I = X .

To conclude, it occurs that the different notions that we have introduced so far
to describe the isotropic behaviour of a deterministic deformation are in fact
one and correspond to the spiral case.

5 Identification of θ through excursion sets

As explained in the introduction of this paper, we consider the case of an un-
known deformation θ, which we want to identify using sparse data: the obser-
vations of excursion sets of Xθ over well-chosen domains. More precisely, we
assume that the mean modified Euler characteristic of some excursion sets of
Xθ has been computed and we explain how we can almost uniquely characterize
θ. The modified Euler characteristic is more adapted to our method than the
Euler characteristic itself. This is due to the dependence of the mean Euler
characteristic of an excursion set over a two-dimensional domain on both the
perimeter length and the area of the domain, whereas its mean modified version
only depends on the area (compare Formulas (6) and (8)). In the second place,
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we limit ourselves to spiral deformations and we show that in this case, we can
easily estimate θ thanks to only one realization of the deformed field Xθ.

The underlying field X is unknown but it is still assumed to satisfy assump-
tion (H). The unknown deformation θ belongs to D2(R2) and at each point in
R2, its Jacobian determinant is positive.

5.1 Identification of θ

5.1.1 Case of a linear deformation.

Here comes the simple case of a linear deformation that we use as a first step
towards the general case. Let us assume that θ is a linear function and let us

write it matricially in a fixed orthonormal basis of R2: θ =

(
θ11 θ12

θ21 θ22

)
. In

this case, we only have to consider the excursion sets over one horizontal seg-
ment, one vertical segment and one rectangle (product of two segments): we fix
(s, t) ∈ (R\{0})2, u 6= 0 and we assume that we know E[φ(Au(Xθ, [0, s]×{0}))],
E[φ(Au(Xθ, {0} × [0, t]))] and E[φ(Au(Xθ, T (s, t))]. The three real numbers

a =
√
θ2

11 + θ2
21, b =

√
θ2

12 + θ2
22 and c = θ11θ22 − θ21θ12 (16)

satisfy

|θ([0, s]× {0})|1 = |s|a, |θ({0} × [0, t])|1 = |t|b, and |θ(T (s, t))|2 = |st|c.

Therefore, they are solutions of equations given by Formulas (7) and (6) and
they can be used to write another expression of matrix θ: there exists (α, β) ∈ T2

such that θ =

(
a cos(α) b cos(β)
a sin(α) b sin(β)

)
. Let δ = β − α be the angle between the

two column vectors; it satisfies c = ab sin(δ), whence

δ ∈ {δ0, δ1}, where


δ0 = arcsin

( c
ab

)
∈ (0, π/2]

δ1 = π − arcsin
( c
ab

)
∈ [π/2, π).

Consequently, we are able to determine matrix θ up to an unknown rotation,
with two possibilities concerning the angle between its two column vectors: θ
belongs to the set M(a, b, c) defined by

M(a, b, c) =

{
ρα

(
a
√
b2 − (ca−1)2

0 ca−1

)
, ρ

(
a −

√
b2 − (ca−1)2

0 ca−1

)
, α ∈ T

}
(17)

If the determinant of θ was not assumed to be positive, there would be
two other possibilities, up to a rotation, because δ could take four possible
values. Note that according to Example 2.4, Xθ is isotropic in the case where
a = b =

√
c, which implies δ = π/2.

16



Of course, because of the isotropy of X, we obtain θ up to post-composition
with an unknown rotation. Our method is based on the mean Euler character-
istic of excursion sets of Xθ over some sets, which only depends on θ through
the perimeter and area of the set’s image by θ. Consequently, we can not dif-
ferentiate between two deformations that transform any set into sets with the
same perimeter and the same area.

We summarize our approach in the following method.

Method 5.1 Let θ =

(
θ11 θ12

θ21 θ22

)
be an unknown linear deformation with posi-

tive determinant. For a fixed (s, t) ∈ (R\{0})2
, for a fixed u ∈ R\{0}, we assume

that E[φ(Au(Xθ, T ))] is known for T of the form [0, s] × {0}, {0} × [0, t] and
[0, s]× [0, t]. Then a, b and c given by (16) are computable thanks to Formulas
(7) and (6) and θ belongs to the set M(a, b, c) defined by (17).

5.1.2 General method.

We refer to the appendix of [4] for a precise definition of the complex dilatation
and for the statement of the mapping theorem that formulates a characterization
of a deformation up to a conformal mapping through its complex dilatation. To
be able to apply it, we add an hypothesis on θ: from now on, we assume that θ
has uniformly bounded distortion, that is to say the ratio of

lim sup
x→x0

|θ(x)− θ(x0)|
|x− x0|

to lim inf
x→x0

|θ(x)− θ(x0)|
|x− x0|

is uniformly bounded for x0 ∈ R2.
We fix u 6= 0, S > 0 and we assume that E[φ(Au(Xθ, [0, s] × {t}))],

E[φ(Au(Xθ, {s} × [0, t]))] and E[φ(Au(Xθ, T (s, t))] are known for any (s, t) ∈
[−S, S]2. Then for any (s, t) ∈ [−S, S]2, we can deduce |θ([0, s] × {t})|1 and
|θ({s} × [0, t])|1 from Formula (9) by simply solving a linear system. Besides

|θ([0, s]× {t})|1 =

∫
[0,s]

‖J1
θ (x, t)‖dx =

∫
[0,s]

√
∂xθ1(x, t)2 + ∂xθ2(x, t)2 dx,

|θ({s} × [0, t])|1 =

∫
[0,t]

‖J2
θ (s, y)‖dy =

∫
[0,t]

√
∂yθ1(s, y)2 + ∂yθ2(s, y)2 dy.

The first-order partial derivatives of θ are continuous. By differentiating the
functions s 7→ |θ([0, s]× {t})|1 and t 7→ |θ({s} × [0, t])|1, we access to functions
s 7→ ‖J1

θ (s, t)‖ and t 7→ ‖J2
θ (s, t)‖ on segment [−S, S].

Now considering the rectangle domains {T (s, t), (s, t) ∈ [−S, S]2}, we as-
sume that E[φ(Au(X, θ(T (s, t))))] is known. Since u 6= 0, we can compute
|T (s, t)|2 thanks to Formula (8). Then, by differentiating twice the function

(s, t) 7→ |θ(T (s, t))|2 =

∫
[0,s]

∫
[0,t]

|det(Jθ(x, y))| dx dy,
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with respect to s and to t on the square [−S, S]2, we obtain function (s, t) 7→
|det(Jθ(s, t))| on the same square.

Now, we fix x ∈ [−S, S]2, we write Jθ(x) =

(
θ11 θ12

θ21 θ22

)
and we use the

same notations a, b and c defined by (16) as in the linear case, although they
now depend on x. The explanations given in Section 5.1.1 apply here and
consequently, Jθ(x) belongs toM(a, b, c). Moreover, let us express the complex
dilatation µ, given by

µ =
∂z̄θ

∂zθ
,

where


∂zθ =

1

2
(∂sθ1 + ∂tθ2) +

i

2
(∂sθ2 − ∂tθ1)

∂z̄θ =
1

2
(∂sθ1 − ∂tθ2) +

i

2
(∂sθ2 + ∂tθ1).

At point x, a short computation shows that µ(x) takes two possible values in
the set C(a, b, c) defined by

C(a, b, c) =

{
1

a2 + b2 + 2c
(a2 − b2 ± 2i

√
a2b2 − c2)

}
. (18)

The general method is summarized below.

Method 5.2 Let θ ∈ D2(R2) a deformation with a positive Jacobian on R2. Let
S > 0 and let u ∈ R\{0} be fixed. Assuming that for any x = (s, t) ∈ [−S, S]2,
for any T ∈ {[0, s]× {t}, {s} × [0, t], [0, s]× [0, t]}, we know E[φ(Au(Xθ, T ))],
we may compute a = ‖J1

θ (x)‖, b = ‖J1
θ (x)‖ and c = det(Jθ(x). Consequently,

for each x ∈ [−S, S]2, the Jacobian matrix at point x, Jθ(x) belongs toM(a, b, c)
defined by (17) and the complex dilatation at point x, µ(x) belongs to C(a, b, c)
defined by (18).

Remark 5.3 (Numerical approach) In practise, we can only have at our
disposal a finite amount of data. Let σ be a partition of [−S, S]. If we know{
E[φ(Au(Xθ, T ))], T ∈ {[0, s]× {t}, {s} × [0, t], [0, s]× [0, t]} , (s, t) ∈ σ2

}
,

numerical approaches such as Runge-Kutta methods allow to compute approxi-
mate values of ‖J1

θ (s, t)‖, ‖J2
θ (s, t)‖ and det(Jθ(s, t)) for any (s, t) ∈ σ2 and

the approximate values for Jθ(s, t) and µ(s, t).

5.1.3 Case of a tensorial deformation

We now study the particular case of tensorial deformations, where we can com-
pletely identify θ if we make an assumption of monotonicity on its coordinate
functions. Let θ(s, t) = (θ1(s), θ2(t)). Our hypotheses on θ mean that for
i ∈ {1, 2}, θi : R → R satisfies θi(0) = 0, θi is a bijective function of class C2

and therefore it is monotonous. Note that θ transforms a rectangle [s, v]× [t, w]
into another rectangle θ1([s, v])× θ2([t, w]).
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Let s ∈ R\{0}. We deduce from Formula (9) that
E[φ(Au(Xθ, [0, s]× {0})]−Ψ(u) =

e−u
2/2

2π

∫ s

0

|θ′1(x)| dx

E[φ(Au(Xθ, {0} × [0, s])]−Ψ(u) =
e−u

2/2

2π

∫ s

0

|θ′2(x)| dx

and consequently, we can state the following method.

Method 5.4 Let (s, t) 7→ θ(s, t) = (θ1(s), θ2(t)) ∈ D2(R2) be a tensorial
deformation. We fix S > 0 and u ∈ R. We assume that for any real
number s ∈ [−S, S]\{0} and for T ∈ {[0, s]× {0}, {0} × [0, s]}, we know
E[φ(Au(Xθ, T ))]. Then we determine functions s 7→ |θ′1(s)| and s 7→ |θ′2(s)|
on [−S, S] thanks to Formula (9). If the sign of each coordinate function is
known then θ is completely determined.

Example 5.5 Let (α, β) ∈ (R\{0})2, let θ be defined on [0, 1]2 by θ(s, t) =
(sα, tβ) and let σ be a partition of (0, 1]. To identify θ1, we follow the above
method adapted to a numerical approach; thus we obtain approximate values for
{|θ′1(s)|, s ∈ σ}. Constant values correspond to the case of α = 1. Otherwise,
we have |θ′1(s)| = |α| sα−1, therefore coefficient α can be computed through a
regression method as the slope of the line representing log(|θ′1(s)|) = log (|α|) +
(α − 1) log(s) as a function of log(s) on (0, 1]. The same method holds to get
coefficient β.

Remark 5.6 The three methods 5.1, 5.2 and 5.4 can be easily adapted if the
modified Euler characteristic φ is replaced by the Euler characteristic itself χ.

5.2 Estimation in the spiral case

We have assumed all along the first part of this section that E[φ(Au(Xθ, T ))] was
known for some basic domains T , but we have not yet discussed estimation mat-
ters. Without any hypothesis on θ, this expectation seems uneasy to estimate
from one single realization of Xθ, for the deformed field is non-stationary, except
in the linear case. Yet it is possible in the spiral case thanks to the isotropy of
the deformed field. More precisely, let θ ∈ D2(R2) be a spiral deformation; we
show in the following how to estimate ‖J1

θ (x)‖, ‖J2
θ (x)‖ and det(Jθ(x)) at each

point x in a chosen domain. Then the end of Method 5.2 applies to identify θ.
Let x ∈ R2\{0}, let (r0, ϕ0) be its polar coordinates and for N ∈ N\{0}, let

T 0
N = {(r, ϕ) ∈ (0,+∞)× T / r0 ≤ r ≤ r0 +N−1, ϕ0 ≤ ϕ ≤ ϕ0 + 2πN−1}.

For any k ∈ {0, · · · , N − 1}, we write T kN = ρ2kπ/N (TN0 ). We fix u 6= 0 and
we define

ZN = N−1
N−1∑
k=0

φ(Au(Xθ, T
k
N )) = N−1

N−1∑
k=0

φ(Au(X, θ(T kN ))),
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where φ is the modified Euler characteristic. Remember that φ satisfies an
additivity property (see Remark 3.1). Thus,

ZN = N−1φ

(
Au

(
X,

N−1
∪
k=0

θ(T kN )

))
= N−1φ(Au(X, θ(UN ))), where UN =

N−1
∪
k=0

T kN .

We derive the asymptotic behaviour of the expectation and the variance of ZN
from the χ-isotropy property satisfied by θ according to Theorem 4.4.

Proposition 5.7 There exist constants a 6= 0 and c > 0 (depending only on u)
and n ∈ N\{0} such that

E[ZN ] ∼
N→+∞

a |det(Jθ(x))||T 0
N |2

and for N ≥ n,

Var[ZN ] ≤ c |det(Jθ(x))| |T 0
N |2

N
.

Proof Let N ∈ N\{0}. The χ-isotropy of θ implies that for any k ∈
{0, · · · , N − 1}, E[φ(Au(X, θ(T kN )))] = E[φ(Au(X, θ(T 0

N )))], according to Defi-
nition 4.1. Therefore, the expectation of ZN is

E[ZN ] = E[φ(Au(X, θ(T 0
N )))] =

u e−u
2/2

(2π)3/2
|θ(T 0

N )|2.1

We study the asymptotic behaviour of this sequence.∣∣|θ(T 0
N )|2 − | det(Jθ(x))||T 0

N |2
∣∣

≤
∫ r0+N−1

r0

∫ ϕ0+2πN−1

ϕ0

| |det(Jθ(S(r, ϕ)))| − | det(Jθ(S(r0, ϕ0)))| | r dr dϕ

≤ sup
r0≤r≤r0+N−1

ϕ0≤ϕ≤ϕ0+2πN−1

| |det(Jθ(S(r, ϕ)))| − | det(Jθ(S(r0, ϕ0)))| | |T 0
N |2,

with sup
r0≤r≤r0+N−1

ϕ0≤ϕ≤ϕ0+2πN−1

| |det(Jθ(S(r, ϕ)))| − | det(Jθ(S(r0, ϕ0)))| | −→
N→+∞

0. Conse-

quently,
|θ(T 0

N )|2 ∼
N→+∞

|det(Jθ(x))||T 0
N |2 (19)

and the result about the asymptotic expectation holds.
Now we use Formula (10) (with its notations) to get an integration expression

of the variance of ZN = N−1φ(Au(X, θ(UN ))) and an asymptotic upper-bound:

Var[φ(Au(X, θ(UN )))] =

∫
R2

|θ(UN ) ∩ (θ(UN )− t)|2(G(u, t)D(t)1/2 − h(u)2) dt

+ |θ(UN )|2(2π)−1g(u)

≤ |θ(UN )|2
(∫

R2

(G(u, t)D(t)1/2 − h(u)2) dt+ (2π)−1g(u)

)
≤ c |θ(UN )|2 = cN |θ(T 0

N )|2,
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where c > 0. (Note that the integral domain is in fact the compact {t −
t′, (t, t′) ∈ U2

N}.) Consequently, using (19), we get

Var[ZN ] ≤ cN−1 |θ(T 0
N )|2 ∼

N→+∞
cN−1 |det(Jθ(x))| |T 0

N |2.

This concludes the proof.
Proposition 5.7 shows that, asymptotically, the variance of ZN is negligi-

ble with respect to its expectation. Practically, we could obtain |det(Jθ(x))|
through a regression method since, up to a constant, it is the coefficient of the
linear relation linking asymptotically |θ(T 0

N )|2 and |T 0
N |2. Constant a is totally

explicit and constant c may be numerically computed.
We can adopt the same approach to get an estimation of ‖J iθ(x)‖, for i ∈

{1, 2}. We will only state the asymptotic result (for i = 1) because the proof
is very similar to the one of Proposition 5.7. Let x = (x1, x2) ∈ R2 and S0

N =
[x1, x1 + N−1] × {x2}. For N ∈ N, for any k ∈ {0, · · · , N − 1}, we write
SkN = ρ2kπ/N (S0

N ) and we define

YN = N−1
N−1∑
k=0

φ(Au(Xθ, S
k
N )).

Proposition 5.8 There exist constants d 6= 0 and k > 0 (depending only on u)
and n ∈ N\{0} such that

E[YN ] ∼
N→+∞

d ‖J1
θ (x)‖|S0

N |1

and for N ≥ n,

Var[YN ] ≤ k ‖J
1
θ (x)‖ |S0

N |1
N

.

Estimates of |det(Jθ)|, ‖J1
θ (x)‖ and ‖J2

θ (x)‖ bring a nearly complete character-
ization of the Jacobian matrix of θ, as explained in Section 5.1.
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